STRUCTURES OF ORGANO-TRANSITION METAL COMPLEXES ANNUAL SURVEY COVERING THE YEAR 1974.

Michael I. Bruce

Department of Physical and Inorganic Chemistry, University of Adelaide, Adelaide, South Australia, 5001.

INTRODUCTION

The advent of modern computer-controlled X-ray diffractometers has resulted in a dramatic increase in the number of reported structures of organo-transition metal complexes determined by this means. For example, the yearly totals of structures reported in these surveys for the years 1968 and 1973 were about 140 and 290; the following summary gives details of over 400.

During the year under review, it became obvious that our previous discursive method of reviewing those structures of interest to organometallic chemists would have to be changed for two reasons: firstly, the sheer magnitude of the time and effort involved, and secondly, the fact that many of the structures were being discussed in the sections devoted to the particular elements involved. Consequently, we have decided to present this survey in two sections, comprising a collection of briefly annotated diagrams, based on the reported illustrations of structures, and ordered according to structural type, together with a molecular formula index of structures published during the year. This summary presents details of these complexes, including some reported during 1972 and 1973 which had escaped our previous notice.

It is of some interest that the year produced only two duplicate Organometallic Structures parts I and II covering the year 1973 see J. Organometal. Chem., 75(1974)335-394 and 89(1975)215-272. determinations, while several compounds of long standing were either reexamined, or structurally characterised for the first time. Examples include $Fe_2(CO)_9$, $Fe_3(CO)_{12}$ (further refinement), $[M(CO)_3C_5H_5)]_2$ (M = Cr, Mo, W), and $Ni(CO)_2(PPh_3)_2$.

In addition to conventional organometallics, small Tables at the end refer to other complexes of interest to many organometallic chemists. These include hydride and boron hydride derivatives, nitrosyls, dinitrogen, aryldiazo, aryldiimine and related complexes, and binary metal-tertiary phosphine complexes.

REVIEWS AND OTHER PAPERS OF STRUCTURAL INTEREST

The first volume of a new Chemical Society Specialist Report, <u>Molecular Structure by Diffraction Methods</u> has appeared,¹ and includes sections on structure determinations of organometallic and inorganic compounds by electron diffraction, and surveys of X-ray diffraction results on a Group basis, together with a chapter on mixed cluster complexes. This survey covers the period January 1971 to March 1972.

The use of bond length data in considering the *trans* influence of ligands in a series of platinum complexes containing a linear C-Pt-Cl array has been examined.² The Pt-C bond lengths depend on the nature of the C-donor ligand, and increase in the order CO < RNC < carbene < σ -carbyl; when account is taken of the hybridisation of the carbon atom involved, an increase in the effective radius of platinum is found (and paralleled by an increase in Pt-Cl distances), a variation resulting from changes in the extent of Pt-C multiple bonding. In another series, where the ligand *trans* to Cl has negligible π -acidity, a similar range of Pt-Cl bond lengths is found. These observations are rationalised in a qualitative explanation of the *trans* influence which allows for the effects of both σ and π components.

The conformations of cyclobutane rings in a variety of complexes

18

containing this molety have been compared with a large number of purely organic compounds.³ In organometallic compounds the dihedral ranges from 0.2(3)° to 16.4(12)°, as a result of the differing ring systems fused to the cyclobutane ring. In contrast, the preferred angle for <u>simple</u> substituted cyclobutanes appears to be <u>ca.</u> 26 ± 3°.

Non-parametised MO calculations on the dimeric series $[Cr_2(CO)_8(PR_2)_2]^{n-2}$ and $[Mn_2(CO)_8(PR_2)_2]^n$ (n = 0, +1, +2) have indicated that the electrons are added to an orbital with largely in-plane antibonding σ^* -type dimetal orbital character (rather than out-of-plane π^* -type or bridging ligand).⁴ Available X-ray and spectral data support this interpretation.

Of some interest were two papers in the W.C. Hamilton Memorial Symposium, held at the Brookhaven National Laboratory on 15 June 1973. Coppens⁵ has discussed the implications of combined X-ray and neutron diffraction studies. A survey of ten combined studies, including $Cr(CO)_3(C_6H_6)$, has shown that experimental measurements (X-N difference densities) yield results comparable with the more sophisticated electron density calculations, and that third row elements can be studied successfully. Abrahams⁶ has considered the reliability of crystallographic structural information, analysing objective methods for assessing quality of intensity measurements, errors in theoretical models used in crystal structure refinements and associated computing methods, and assessing the significance of the final parameters.

On cooling to 80K, the unit cell of ferrocene changes to triclinic from the monoclinic cell found at room temperature, as a result of shortening of the b and c axes.⁷

Much of the current discussion on structures of nitrosyl complexes has been summarised in a recent review.⁸ Russian workers have considered the occurrence of linear or bent M-N-O groups in 29 octahedral and square pyramidal complexes,⁹ and the mutual influences of ligands in a series of complexes MXL₅ with metal-ligand multiple bonds including 27 nitrosyl complexes and dinitrogen derivatives.¹⁰

There has been further discussion¹¹, on the basis of the carly structure determination¹², concerning Cu-H-B interactions in $Cu_2B_{10}H_{10}$. The IR spectra of this compound, and also of $[(Ph_3P)Cu]_2B_{10}H_{10}$, contain bands consistent with Cu-H-B stretching modes. On the basis of observed Cu and B positions (Cu-B distances range from 2.06 to 2.33 Å), there are both Cu-B and Cu-H-B interactions present, the possible Cu-H distances indicating less than full bridge bonds.

ELECTRON DIFFRACTION STUDIES

20

The electron diffraction structures of $Cr(C_5H_5)_2$ and $Mg(C_5H_5)_2$ have been compared; the eclipsed configuration seems to be preferred, but the barriers to internal rotation are less than the thermal energy available $(0.8 \text{ kcal.mol}^{-1})$. In $Cr(C_5H_5)_2$, the C-H bonds are bent toward the metal atom by 2.9° out of the C₅ plane.¹³ Re-evaluation of the gas phase electron diffraction data, together with spectroscopic parameters for Fe(CO)₅, given¹⁴ the following values for the bond lengths: FeC(av), 1.8205 + 0.0010; CO(av), 1.1531 ± 0.0011 Å, with the difference between equatorial and axial bonds, 0.0204 ± 0.0055 Å.

STRUCTURAL DIAGRAMS

As in previous years, these have been assembled usually using the diagram appearing in the paper. The η symbol has been used to arrange the organic ligands, using the largest group where several different ones are present. Thus, the diagrams for Fe(SnPh₃)(CO)(C₂Ph₂)(C₅H₅) and Mo(CO)(NO)(C₃H₅)(S₂CNMe₂)(C₅H₅) are in the η ⁵ section. Further arrangement has usually been in order of Periodic Group. Suitable brief footnotes to each section draw attention to any unusual features noted in the structure. The following headings have been used:

n¹-Ligands

- (a) Simple carbonyls, carbonyl hydrides, halides and pseudohalides
- (b) Carbonyls containing Group V donor ligands
- (c) Carbonyl hydrides and halides containing Group V donor ligands
- (d) Carbonyls containing Group VI donor ligands
- (e) Thiocarbonyls
- (f) Isocyanide complexes
- (g) Carbene and carbyne complexes
- (h) Alkyls, aryls and acyls
- (i) Complexes containing chelating n¹-ligands

η^2 -Ligards

- (a) Ligands bonded by two n¹ groups (metallocycles)
- (b) Olefin complexes
- (c) Acetylene complexes
- (d) Complexes containing other three-membered rings
- n³-Ligands
- (a) n³-Allyl complexes
- (b) Ligands bonded via $\eta^1 + \eta^2$ groups

η⁴-Ligands

- (a) Ligands bonded via $2\eta^1 + \eta^2$ groups
- (b) Ligands bonded via η^1 and/or η^2 groups
- (c) Acyclic n⁴ ligands
- (d) 1,2,3,4-n⁴ dienes
- (e) 1,2,3,n-n⁴ ligands
- (f) $1,2,3,4-\eta^4+1,2,3,n-\eta^4$ ligands

(g) Cyclobutadienes

η⁵-Ligands

22

(a) Cyclopentadienyls

(b) Cyclopentadienyl metal halides

(c) Cyclopentadienyls containing other anionic ligands

(d) Cyclopentadienylmetal thiolate complexes as ligands

(e) Cyclopentadienyl complexes containing CO, PR3 or NO ligands

(f) Cyclopentadienyl complexes containing other n-hydrocarbon ligands

(g) Substituted ferrocenes

(h) Acyclic n⁵-ligands

n⁶-Ligands

(a) Cyclic n⁶-ligands (arenes)

(b) Acyclic n⁶-ligands

n⁷-Ligands

1⁸-Ligands

n-Heteroaton Ligands

Copper and silver Complexes

Polyhedral Metalloborane Complexes

Polyhedral Metallocarborane Complexes

Complexes Containing Metal-Metal Bonds

(a) Homobinuclear transition metal complexes

(b) Heterobinuclear transition metal complexes

(c) Polynuclear clusters containing CO or PR₃ ligands

(d) Polynuclear clusters containing Main Group elements

(e) Polynuclear clusters containing n-hydrocarbon ligands

(f) Complexes containing Transition Metal-Main Group metal bonds

Hydride Complexes

Nitrosyls

Dinitrogen, Aryldiazo, Aryldiimine and Related Complexes Binary Transition Metal-Tertiary Phosphine Complexes

TABULATED STRUCTURAL DATA

As in previous years, some structural data of general interest has been collected. Such data, presented in Tables 1 and 2, includes metal-metal bond lengths, and parameters of coordinated NO ligands.

SUMMARY TABLES 3-7

These Tables list most complexes whose structures have been reported during 1974, together with a small number reported during the previous two years. The arrangement (in columns) is as follows:

- 1. Reference number, referring to the structural diagram in the preceding section.
- Molecular formula, arranged in order of increasing C and H content.
 Other elements follow in alphabetical order of symbol. Ionic complexes are listed under the <u>relevant</u> ion, e.g. [(Ph₃P)₂N][Fe(CN)(CO)₄] appears as C₅FeNO₄⁻.C₃₆H₃₀NP₂⁺, and solvated molecules, if present, are listed last.
- 3. Structural formula, listed as far as is practicable, with metal atoms first, followed by attached ligand in increasing degree of electron donation. Thus, for some commonly found groups, the order is:
 - M, H, M' (Main Group or Transition Metal) X (monodentate anionic ligand), R (σ -alkyl, aryl, etc.) η^1 -ligands, ER₃(E = N, P, As, Sb), SR₂, acac (and anionic bidentates), NO η^2 -ligands (olefin, acetylene),

η³-ligands (ally1, eny1),
η⁴-ligands (diene, cyclo-diene),
η⁵-ligands (dieny1, cyclo-dieny1),
η⁶-ligands (triene, arene),
η⁷-ligands (cyclo-trieny1),
η⁸-ligands (cyclo-tetraene)

Of necessity, this order cannot be followed in all cases, particularly with cluster complexes. In addition, it has not proved possible to indicate bridging ligands (µ-L) in all cases.

- 4 8. Crystal data, comprising crystal class, space group, Z and writ cell dimensions.
- 9 11. Number of intensity data (observed reflections) used in structural refinement, and lowest R value reported (as %). In an increasing number of cases, conventional (R) and weighted (R_W) values are being quoted; where appropriate, both are listed here.
- 12. Miscellaneous notes, often referring to low temperature determinations, etc. Note: n.d. = neutron diffraction study.
- Reference number relating to the reference list at the end of Section 2.

Abbreviations

In column 3, several commonly used abbreviations appear, while in other cases, simple formulae have been used. These are summarised below. Where the ligand is complex, the ligand formula is explained in a footnote.

acac	acetylacetonate
apo	2C, N-acetophenonoxime
bipy	2,2'-bipyridyl
Cy	cyclohexyl
dba	dibenzylideneacetone
dbm	dibenzoylmethanate
diars	1,2-bis(dimethylarsino)benzene

diglyme	(MeOCH ₂ CH ₂) ₂ 0
diox	diexan
dre	1,2-dimethoxyethane
dre	dimethylglyoximate
dmpe	1,2-bis(dimethylphosphino)ethane
dppe	1,2-bis(diphenylphosphino)ethane
dppm	bis(diphenylphosphino)methane
dq	duroquinone
Fc	ferroceny1
ind	indenyl
Meim	2,3-dimethylimidazolyl
Memnt	S-methylmaleonitriledithiolate
men	menthyl
Mepaphy	(E)-5-methylpyridine-2-carboxyldehyde-2-pyridylhydrazone
nbd	norbornadiene
oepH4	octaethylporphyrin dication
pda	pyridazinedicarboxylate
phen	1,10-phenanthroline
РУ	pyridine
pz	pyrazolyl _
sal:NPh	[PhN:CHC ₆ H ₄ O-0]
salen	ethylene-1,2-bis(salicylideniminato)
salophen	o-phenylenebis(salicylideniminato)
tcne	tetracyanoethylene
thf	tetrahydrofuran
tol	tolyl

n¹-LIGANDS

(a) Simple carbonyls, carbonyl hydrides, halides and pseudohalides

[Structures 1 - 5]

(1) V-C 1.931(9)A, linear P-N-P in cation. (2) NaCl-type ionic structure, no T1-Co interaction [T1-Co, 3.55(1)Å], but CO directed at T1. (3) Cr-CO cis and trans to I, 1.893, 1.859Å, respectively. (4) Fe-CO(ax) - Fe-CO(eq), 0.045(12)Å; Fe-CN, 1.928(8)Å. (5) From oepH₂ + [RhCl(CO)₂]₂, essentially planar [oepH4]²⁺ cation.

(1) [(Ph₃P)₂N][V(CO)₆] [31] (2) TI [Co(CO)₄] [21] (3) (N₄P₄Me₉)[CrI(CO)₅] [23]

(4) $(Ph_3P)_{N}[Fe(CO)_4(CN)][24]$ (5) $[oepH_4]^{2+}2[RhCl_4(CO)_3][15]$

(b) Carbonyls containing Group V donor ligands

[Structures 6 - 28]

26

(6) First structurally characterised trans-diimine complex.

(?) Intramolecular C-H...N bond; coordination mode of chelating ligand determined. (9) Bridging phosphinimine ligands in zvitterionic (Ph₃ \dot{P} - $\bar{N}E$) (11) From Cr(CO)₆ + Me₂As(O)OH, Cr₂As₄ metallocycle in chair form. form. From W(CO)₅ + P₅Me₅, 'skew-boat' conformation for P₆ skeleton. (12)First bridging PhN2 group. (16) Unsymmetrical CO bridge compensated (15) by less unsymmetrical µ-amido ligands. (19) Confirms internal asymmetry in P(OMe)₃ groups found by IR. (20) Geometry intermediate between TBP and SP, shows rapid site exchange of 3 CO groups. (22) CO, NO disordered. (23) Ordered model suggested by bond parameters: Co-C(N)², 1.70; Co-C(N)^{1,3}, 1.76A. (25) Ligand H-bonded to coordinated water. (25a) From RhCl(CO)(PPh3)2 + K[TCNE], cyanocarbon bonded via N, slight delocalisation (cf. delocalised K2[cis-C4(CN)6]); one Rh severely distorted square planar. (26) Unusual IrNC₄N metallocycle from condensation of CF₃CN and CH₂CMeCH₂ ligands on Ir. (28) Some Ni-Ni interaction; bridging CO.

(10) Mo(CO)₅(P₄S₃) [25]

(11) [Cr(CO)] (AsMe2) [170]

(9) Mo₂(CO)₆(NHPPh₃)₃ [365]

00

co

(7) Mo(CO)₄(Mepaphy) [158]

(232) Co(CO)(C₁₀H₁₇N₈) [80]

(24) $[Rh(CO) \{O[(CH_2)_2 PPh_2]_2\}]PF_6$ [291]

(25) [Rh(CO)(H₂O) $\{O[(CH_2)_2O(CH_2)_2PPh_2]_2\}]PF_6$ [291]

30

(26) $Ir(CO)(PPh_3)\{[NHC(CF_3)]_2C(C_3H_5)\}$ [275] (27) $Ni(CO)_2(PPh_3)_2$ [318]

(28) $Ni_2(CO)_3 \{S[P(CF_3)_2]_2\}_2$ [81]

(c) Carbonyl hydrides and halides containing Group V donor ligands
 [Structures 29 - 38]

(29) Distorted octahedron capped by H; dmpe ligands disordered.
(30) 1/2/2/2 geometry, intermediate between capped trigonal prism and capped octahedron, I in unique position. (32) I caps trigonal prism.
(33) CO, NO disordered, long Ru-I, 2.828(2)Å. (35) ν(CO), 1885 cm⁻¹, long Ir-C1, 2.619(6)Å, leads to ready formation of [Ir(CO)(PMe₂Ph)₃]⁺.

(29) TaH(CO),(dmpe), [134]

PMe₂Ph coMe_pPhP PMe₂Ph

PPh₂

(30) [WI(CO), (PMe2Ph),]BPh4 [281]

(35) IrCl(CO)(PMe₂Ph)₃ [262]

(31) $\left\{ WL_2(CO)_3 [Me_2ASC(CF_3) = C(CF_3)ASMe_2] \right\}^{+}$ [73]

(d) Carbonyls containing Group VI donor ligands

[Structures 39 - 48]

(39) From No (N₂) (PMe₂Ph)₄ + CO₂, via spontaneous reaction of Mo(CO₂)₂(PMe₂Ph)₄. (40) Monodentate β-thiodiketonate. (41) Ligand S-bonded, intermolecular N-H...O bond. (43) Distorted pentagonal bipyramid, axial CO; for dtc with S in both positions, Re-S(eq), Re-S(ax)
2.433, 2.518Å, respectively. (45) From Re(CF₃XCO)₅ + CS₂. (46) Orange isomer. (47) Rh-O, 2.049(7); P-O, 1.52(1)Å; latter retains considerable bond character. (48) Chelating pyridazinedicarboxylate; solvated H₂O forms 3 O-H...O hydrogen bonds.
See also: 210, 211, 212.

(39) [Mo(CO₃)₂(CO) (Pi4e₂Ph)₃]₂ [358]

(40) $\{W(CO)_{5}[SC(C_{4}H_{3}S) = CHCOCF_{3}]\}$ [104]

(41) W(CO) [S(CH2) NHCOCH2] [59] (42) W(CO) [S= (43) Re(CO)(S2CNEt23 [172] СNH(CH2) S] [42]

32

(44) $[Re(CO)_4(S_2PEt_2)]_2$ [132]

(48) Rh(pda)(CO)(PPh₃) [258]

(e) Thiocarbonyls

[Structure 49]

(49) Disordered CS, Cl (terminal).

- (49) Ru₂Cl₄(CS)(PPh₃)₄ [368]
- (f) Isocyanide complexes

[Structure 50]

(50) Mn-CO, 1.74(3); Mn-CNPh, 1.92(3)A.

See also: 52, 108, 215, 31?, 321, 328.

(50) MnBr(CO)₃(CNPh)₂ [177]

(g) Carbene and carbyne complexes [Structures 51 - 64]

> (51) Planar C-bonded imidazole confirmed, Ru-C 2.128(4)Å. (52) Ru-C bond lengths: 2.045 (carbone), 1.979 (isocyanide), 1.825Å(CO). (53) High trans influence of secondary carbone: Rh-Cl(trans-Cl), 2.36; (trans-carbone), 2.445Å. (55) Planar chelating carbone. (57) Ylid formulation favoured (tetrahedral C) with organophosphonium ion, Ni-C 2.096, P-C 1.745Å. (58)(59) Comparison of cis-trans isomers; Pt-C bond order \sim 1, trans influence: carbone \sim PR₃ > Cl. (C1) Carbone almost planar, perpendicular to Pt square plane. (62)(63)(64) Comparison of three

References p. 156

(56) [RhCl(py)(CPh₂)]₂CO [312] (57) Ni(CO)₂[CHMePCy₃] [247]

' 3 C CF3 C II N

(51) trans-[Ru(CO)(C-Meim)(NH₃)₄]PF₆ [30]

(53) RhCl₃(CHNMe₂)(PEt₃)₂ [152]

Cr(W)-I both near covalent radii sum.

carbyne complexes: MEC, 1.69(1),

1.68(3), 1.90(5)Å respectively;

(h) Alkyls, aryls and acyls

[Structures 65 - 97]

(65) Slightly distorted pentagonal bipyramid, axial C1. (67) Li interaction at three edges of octahedron, Li... Me, 2.17A; tetrahedral Li, dioxan connects Cr anions, i.e. {Cr[Me2Li-2(diox)]3], (68) Eclipsed (D_{4h}) structure attributed to δ component of quadruple Mo-Mo (74) Non-symmetrical intramolecular H-bond, no evidence for bond. cis-influence on Co-C bond. (77) From [Co(py)(dmg)2] + DDT. (78) Distorted octahedral, axial Me; Co-C 2.047Å (cis influence). (79) Co-C σ bonding favoured. (84) Equivalence of Et protons in ¹H NMR spectrum accidental. (85) Unusual product from NiCl(Br)2 + NAs3 + NaBPh, in refluxing EtOH; TBP. (86) Tilted ligand suggests pseudo-phospha-allyl type interaction. (87) C-bonded acac, 2 CO groups not parallel. (88) HB(pz)₃ group bidentate. (90) trans-Styryl group indicates stereospecific oxidative addition. (91) Acylimino complex from PtIMe(PEt₃)₂ + p-tolNC, refutes 5-coordinate structure proposed from NMR. (93) Strong trans influence of aryl on Pt-CO, 1.97A (cf. [PtC1(CO)(PEt₃)₂]⁺, 1.78A). (94) Unexpected trans configuration; long Pt-P 2.302A. (95) Cubane type, triple-bridging N3 groups. (96) Eight-membered (PCCuC)₂ ring, linear C-Cu-C, weak Cu-Cu interaction (2.843A). (97) Planar anion, tetrahedral Ag coordinated by N, G of NO, and N of CN; infinite 2-dimensional layers.

See also: 60, 61, 134, 178, 218, 235, 236, 237, 238, 241, 247, 260, 301, 302. Structures 182, 183, 366a, 382a, 382b contain n¹:n⁵ - C₅H₅ groups.

(65) TaCl₂Me[ON(Me)NO]₂ [16]

(74) $CoMe(H_2O)(dmg)_2$ [52]

(75) CoMe(py)(dmg) [133]

(76) Co(CH₂CH₂CN)(CHPhNH₂CHPhOH)(dmg)₂[263] (77)Co[CCI=C(C₆H₄CI₂](py)(dmg)₂[276]

(81) No structure

(82) Ir Cl₂(CHF₂)(CO)(PPh₃)₂ [319]

(78) CoMe2(C11H19N4O2) [118]

(80) (Me₃PhN)₂ [Rh₂I₆(COMe)₂(CO)₂] [27]

 $\begin{array}{c}
\mathsf{PPh}_{3}\\
\mathsf{OH}\\
\mathsf{C} \equiv \mathsf{C} - \mathsf{Pt} - \mathsf{C} \equiv \mathsf{C} \\
\mathsf{PPh}_{3}
\end{array}$

(91) trans-PtI(CMe:NC6H4CI)(PEt3 2 [223]

Ph C Ph Me P-Pt-P Me Me C Me

Ęt

(93) trans-[Pt(C₆H₄Cl)(CO)(PEt₃)₂]⁺[203]

(94) trans-Pt(CO2Et)2(PMe2Ph)2[340]

(96) [Cu(CH₂)₂PMe₂]₂[44]

⁽⁹⁷⁾ AgC(CN)₂(NO) [18]

(i) Complexes containing chelating n¹-ligands

[Structures 99 - 109]

(99) Metallated diimide, planar chelate ring, NH located in difference Fourier. (102) Confirms trans nitrogens: puckered chelate ring. (103) Identity of "Ru(dmpe)2"; previous unit cell in error, giving (104) Ir-P(trans H), 2.396; others 2.346, 2.362A. insoluble Patterson. (105) Chelate ring strained. (106) Trans-chelation by P; Pt-P-C 103° (deformed, expected 116°). (106a) ortho-Metallated phenyldioxolane ligand; complex formed by Grignard route. (107) Addition of $C_2(CF_3)_2$ to acac ligand [cf. (159)]. (108a) From TCNE oxide. (109) First structurally characterised ortho-metallated S-donor ligand.

See also: 231, 302.

(99) IrCl₂[C₆H₃(OMe)N=NH](PPh₃)₂[343]

(101) [Pd(apo)] salophen [306]

(102) $Pd(C_6H_4CH_2NMe_2)(sal=NPh)[239]$ (103) {RuH[CH_2PMe(CH_2)_2PMe_2](dmpe)} [255]

(108a) Pt [C2(CN)40] (AsPh3)2 [335]

(108)[Pd OC(CF3)20C(CF3)2](CNBut)[C(NHBut)(NEt2)][218] (107) Pd (acac C_4F_6)₂ [184]

(106a) $Cr(C_6H_4C_3H_5O_2)_3$ [277]

Cl

 η^2 -LIGANDS

44

(a) Ligands bonded by two n¹ groups (metallocycles)
 [Structures 110 - 112]

(110) From dibenzosemibullvalene, planar ferretane ring. (110a) Ligand formed by allene dimerisation. (111) From OEt + bicyclo[2.2.0]hexene complex (128). (112) From Pt(PPh3)4 + 1,1,2,2-(CN)4cyclopropane, puckered C₃Pt ring.

See also: 232, 325, 326, 364, 365, 366, 370.

(110) Fe(CO)₄(C₁₆H₁₂) [191]

NC.

Ph₃P

(111) Pt(C₆H₉OEt)(PPh₃)₂ [339]

(110a) Rh(acac)(py)₂(C₆H₈)[229]

(112) Pt [C3H2(CN)] (PPh3)2 [342]

₽₽h₃

N

(b) Olefin complexes

[Structures 113 - 129]

(115) Feist's ester complex, *cis* Fe, ester groups results in C_2 tilted out of C_3 -ring plane by 37.6°. (118) 2 enantiomorphs in crystallographic unit; short Rh-P, 2.162Å; C=C inclined 13.7° to mid-point plane.

(119) Comparison with azobenzene derivative. (121) Allene C=C: 1.30 (free);
1.40Å(complexed); H atoms bent back 26°. (122) 2 s-cis, trans,
1 S-cis, cis; C₆H₆ solvate contains 3 cis, trans dba ligands. (123)(124) Rings essentially unchanged by complexation. (126) Establishes absolute configuration of chiral centre formed by olefin coordination.
(127) Zwitterion; crystal racemic with C(2)(R):C(3)(R) and C(2)(S):C(3)(S)
(latter illustrated). (128) Reacts with ethoxide to give (111).
(129) Steric effects cause substituents to be bent away 33, 5°, leading to differing Pt-C and Pt-P bonds.

See also: 185 (n²-C₅H₅), 217, 236, 239, 242, 243, 364, 365, 366.

(113) Cr(CO)₄[C₇H₈(OMe)₂][113]

45

(114) MoO(S₂CNPr₂)₂(tcne) [217]

(115) Fe(CO)₄[C₄H₄(CO₂Me)₂] [86]

(116) Fe(CO)₄(C₈H₆SO₂) [82]

CL

NH₃

CL

(128) Pt(C6H8)(PPh3)2[839]

CI

...(R)

Ph₃P

(129) Pt(NO₂C₆H₄CH=CHC₆H₄NO₂)(PPh₃)₂ [354]

(c) Acetylene complexes

[Structures 129a - 138]

(131) Dihedral PdP₂/PdC₂ 9.7°. (137)(138) Zwitterionic complexes, no Re-Cu or Rh-Ag interactions.

See also: 226, 230, 239, 240, 322, 373, 392.

(129a) Fe2(CO)6(PhC2PPh2)2[320]

(130) Ni2(CO)2(Ph2PC2But)2[320]

(d) Complexes containing other three-membered rings

[Structures 139 - 142]

(139) First stable aminomethylene derivative. (140) Hydroxyl H of one ligand transferred to the other, which bonds via π -bond of >CH=NHMe group. (141) P₂NiCO approximately coplanar. (142) Crown structure. See also: 219, 302.

(139) $Mn(CO)_{A}(CH_{2}=NC_{2}H_{4})$ [34]

(140) Ni(sal=NMe), [167]

(142) [Pd(PhNO)(PBu₃^t)]₃ [402]

n³-LIGANDS

(a) n^3 -Allyl complexes

[Structures 143 - 155]

(145) Stronger C-H...No interaction than (146), with Mo-H 2.27 (possibly 2.15Å). (146) Interaction of aliphatic C-H competes with formation of n^5 -C7H7. (147) Confirms endo attack of diene-Fe(CO)₃ under Friedel-Crafts conditions. (148a) Two P atoms form *trans* chelate. (149) Allyl occupies 2 positions statistically. (149a) Ligand = n^3 -pinenyl. (152) Absolute configuration R. (153) Conformation of allyl may indicate Ni-H(Me)

(147) [Fe(CO),(CHMe(CH),CHMeCMeO)]⁺ [75] (148) Co(CO)₃(C₃Ph₃CO) [256]

(145) Mo(CO)2(CH2CPhCH2)[Et2B(pz)] [227] (146) Mo(CO)2(C7H7)[Et2B(pz)2] [201]

(143) M=Mo [77] $M(O_2CCF_3)(CO)_3(C_3H_5)(dme)$ (144) M=W

50

(154) Slight differences in C-C bond lengths trans to 0, N. interaction. (155) Resolves structure of long-known Bu^tC₂H-trimer from acetylene + PdCl₂. See also: 195, 207, 216, 244, 245, 264, 355.

(147) [Fe(CO),(CHMe(CH),CHMeCMeO)]⁺ [75] (148) Co(CO)₃(C₃Ph₃CO) [256]

(145) Mo(CO)2(CH2CPhCH2)[Et2B(pz)] [227] (146) Mo(CO)2(C7H7)[Et2B(pz)2] [201]

(143) M=Mo [77] $M(O_2CCF_3)(CO)_3(C_3H_5)(dme)$ (144) M=W

50

(154) Slight differences in C-C bond lengths trans to 0, N. interaction. (155) Resolves structure of long-known Bu^tC₂H-trimer from acetylene + PdCl₂. See also: 195, 207, 216, 244, 245, 264, 355.

°Pr3.

51

(148a) RhCl₂(Ph₂PC₆H₄CHCHCMeC₆H₄PPh₂) [329] (149) Ir(C₃H₅)(PPr₃)₂ [97]

(149a) (+)-Ni(C₁₀H₁₅)₂ [220]

(151) [NiBr(dppe)]₂C₈H₁₂ [271]

(152) NiMe(CHMeCHCHMe)[PPrⁱ(men)₂] [194] (152a) NiBr(NCMe)(CH₂CMeCHCO₂Me) [43

(150) [NiBr(PPr₃ⁱ)]₂C₈H₁₂ [271]

. (151a) NiMe(CHMeCHCHMe)(PPr₂ⁱPh) [194]

52

(153) $[Ni(c_{6}H_{11})(PPh_{3})_{2}]ZnCl_{3}$ [341] (154) $[Pd(C_{4}H_{7})]_{2}$ salen [251]

(155) PdCI(PPh₃){CI(HC₂Bu^t)} [308]

(b) Ligands bonded via n¹ + n² groups
[Structures 156 - 157]
(156) From RhCl₃ + allyl alcohol; Rh₂Cl₂ dihedral 162°; H-bonding
0-H...0 or 0-H...Cl with solvent MeOH and coordinated OH.
See also: 239, 248.

Pd Cl Pd Cl

 $(157) \left[PdCI(C_8H_{11}) \right]_2 \left[169 \right]$

(156) [RhCl₂(C₆H₁₁O)]₂MeOH [95]

 η^4 -LIGANDS

(a) Ligards bonded via $2\eta^1 + \eta^2$ groups

[Structures 158 - 159]

(158) From $C_2(CF_3)_2$ + Rh(acac)(C_8H_{12}); fluxional in solution, probably involving labile H₂O. (159) From $C_2(CF_3)_2$ + Ir(acac)(C_8H_{12}), mode of addition differs from (158); alkyne also adds to acac group [cf. (107)].

(158) Rh[C₈H₁₂C(CF₃)](acac)(OH₂) [181]

(b) Ligands attached by n^1 and/or n^2 groups [Structures 162 - 165a]

> (162) Normal rearrangement of tricyclic precursor redirected in presence of Mo, which interacts with $G\pi$ system in intermediate. (164) From [Rh(mnt)(C₈H₁₂)]⁻ + MeI. (165a) Duroquinone has boat conformation. See also: 398.

(160) (161) No structures

(162) Mo(CO) (C₁₂H₁₄) [125] (163) RuCl (NH₂Ph) (nbd) [200]

(165a) Ni(dq)₂ [216]

- (c) Cyclic n⁴ ligands (cyclobutadienes)
 See: 250, 251, 252, 323.
- (d) Acyclic η^4 ligands

[Structures 166 - 167]

(166) Non-planar C(CH₂)₃ ligand; discussion of X-ray *trans* influence with Cr, Mn, Fe complexes, σ , π donor-acceptor properties, using M-CO bond lengths, ν (CO). (167) From 1-bromo-2-bromomethylnaphthalene and Fe₂(CO)₉.

(166) Cr(CO) (PPh3) [C(CH2)] [261]

Br ccВг

(167) $Fe(CO)_{3}(C_{22}H_{16}Br_{2})$ [257]

(165) Rh(dbac)(C₈H₁₀Cl₂) [117]

CI

(e) 1,2,3,4-n⁴ dienes

[Structures 168 - 178]

(168) Conformation of tricyclic ligand similar to iron complex (173). (169)(170) Confirmation of syn, anti geometries established by NMR studies; H located: anti-H 30° away from metal, syn-H 20° toward metal. (171) From thermal ring-closure of cyclooctatetraene complex. (172) From $Fe(CO)_3(C_7H_8) + C_2(CO_2Me)_2$ in $(2_{\pi} + 6_{\pi})$ cycloaddition. (174) Complex resulted from attempted synthesis of heptafulvene derivative. (176) Bond lengths indicate $\pi, 2\sigma$ geometry illustrated. (178) Hydrocarbon ligand is allene dimer, also forms metallocycle with second Rh atom; latter bonded to γ -C of acac ligand.

See also: 241, 247, 269, 332.

(168) Mo(CO)₂(C₁₁H₁₄)₂ [250]

(169) syn-Fe(CO)₃(MeC₄H₄CHMeNHC₆H₄NO₂-m) [161]

(170) anti-Fe(CO)₃(MeC₄H₄CHMeNHPh)[161]

References p. 156

(177) Fe(CO)₃[C₆H₅(CHO)N(CO₂Et)] [112] (178) Rh₂(ocac)₂(PPh₃)₂(C₆H₈) [229]

(173) $Fe(CO)_{3}(C_{10}H_{12})$ [114] (174) $[Fe(CO)_{32}C_{16}H_{14}]$ [234]

56

(171) Fe(CO) [C₈H₆(SiMe₃)(CPh₃)] [30:] (172) Fe(CO) [C₇H₈C₂(CO₂Me₂] [146]

(f) 1,2,3, $n-\eta^4$ ligands (allyl + σ)

[Structure 179]

(179) From barbaralone + Fe2(CO); ref. 85 suggests 'homobutadiene'

structure, whereas ref. 84 says broad features at variance with this form.

(180) No structure

(179) Fe(CO)₃(C₉H₈O) [84,85]

(g) $1, 2, 3, 4-\eta^4 + 1, 2, 3, n-\eta^4$ ligands

[Structure 181]

(181) Fe₂(CO)₆(C₁₁H₁₀O) [85]

n⁵-ligands

(a) Cyclopentadienyls

[Structures 182 - 190]

(182) Tetramer formed by n^1 interaction of C_5H_5 groups with a second Nd; mainly ionic bonds, spatial arrangement results from maximum cation-anion contacts. (183) Dimer formed by bridging n^1 ; $n^5 - C_5H_5$ groups. (184) Random mixture of enantiomorphic pair of molecules. (185) Two $n^5-C_5H_5$ rings; third forms 3-electron n^2 linkage. (189) Migration of carboranyl group to C_5 ring; note H bridging five atoms. (190) First characterisation of triple-decker sandwich cation.

58

(b) Cyclopentadienyl metal halides

[Structures 191 - 201]

(191), (196) - (200) Structures determined in connection with discussion on bonding in bent $M(C_{5H_5})_2$ systems. (192) Twinned, angle Zr-O-Zr 168.9° (cf. linear Ti-O-Ti). (193)(194) Isomorphous, Hf compound contains 12.3%: (195) Steric interactions in expected $(n^5$ -fluorenyl)₂Zr complex eased by opening of ring planes angle to 125.6°, and displacement to give n^3 and n^5 -fluorenyl ligands. (201) From ruthenocene + I₂, rings eclipsed, ring planes at 32.2°.

 $MCl_{2}[(C_{5}H_{4})_{2}(CH_{2})_{3}]$ (193) M=Zr [116] (194) M=Hf [115]

and the second second

(201) [RuI(C₅H₂)]I₃ [64]

(c) Cyclopentadienyls containing other anionic ligands

[Structures 202 - 206]

(202) N-bonded cyanate confirmed. (203) EPR on complex doped with 0.2%V; MO calculations, bonding model considered. (205) Racemic form, m.p. 164°; mixture of $[S_{Ti}S_p + R_{Ti}R_p]$ forms.

N-C-(204) Ti(OCOAr)₂(C₅H₅)₂ [248] Ar = C₆H₄NO₂-p(202) Ti(NCO)2(C5H5)2 [87]

61

(205) TiCI(OC₆H₃Me₂)(C₅H₅) (C_FH₃MeCMe₂Ph) [287]

Cyclopentadienylmetal thiolate complexes as ligands (d)

[Structures 207 - 212]

All studied to seek evidence for metal-metal bond; no unusual features (208) Formally contains Mo(IV), found in Rh(C3H5)2 or M(CO)4 groups. square planar Ni(II), long Mo-Ni separation (3.39Å). (209) Formally contains Nb(V), tetrahedral Ni(O), short Nb-Ni contact (2.78A).

 $(207) \left[(C_5H_5)_2 MO(SMe)_2 Rh(C_3H_5)_2 \right] \left[192 \right] (208) \left\{ \left[(C_5H_5)_2 MO(SMe)_2 \right]_2 Ni \right\}^{2+} \left[253 \right]$

 $(C_5H_5)_2W(\mu-SPh)_2M(CO)_4$ [268] (210) M = Cr; (211) M = Mo;(212) M = W

(209) {[(C_H_)Nb(SMe)] Ni}²⁺ [253]

(e, Cyclopentadienyl complexes containing CO, PR₃ or NO ligands [Structures 213 - 234]

(214) Dethiocarbonylation of dithioformate from hydride + CS2.

(216) Both rotational isomers in crystal. (217) Stereochemically rigid, with n¹-allyl group. (218) Dithiocarbamate attached to n²-allyl group. (219) Asymmetric bridging hydrazide. (220) Contains dicyanomethylenecarbane ligand, extremely strong π -acceptor [cf. bridging C=C(CN)₂ group in (318)], through space C₅H₅ - C=C(CN)₂ interaction, Mo-C(carbane) 1.833Å (bond order 3), asymmetric Mo-carbane π -back-bonding, Mo-C=C, 166.6°. (223)(224) Comparative study of P^{III} and P^V derivatives. (225)(226) Comparison of phenylethynyl complex with CuCl derivative. (228) Carbane complex from Bu^LNC and product from FeMe(CO)₂(C₅H₅) + CyNC. (229) Confirms S-sulphinate. (229*a*) No Fe-Sb bond; distorted octahedral Sb, 4e,3-centre Sb-Cl bonds. (231) Complex contains ligand *ortho*-metallated ly fluorine abstraction, and first example of (π -C₅H₄C₅H₄)PPh₂ ligand. (232) Metallocycle from Co(PPh₃)(PhC₂CO₂Me)(C₅H₅) + Me₂ maleate. (233) Linear Co₃, bridging phosphonate ligands.

(220) MoCI [C=C(CN)2]

[P(OMe)₃]₂(C₅H₅) [150]

(215) MoI(CO)₂(CNPh)(C₅H₅) [124]

Me

(217) Mo(CO)(NO)(C3H5SC(S)NMe2)[28]

(213) NbH(CO)(PPh3)2 (C5H5) [338]

(214) Nb(SH)(CO)(C₅H₅)₂ [72]

(216)Mo(CO)₂(C₅H₆MeO) (C H₅)<u>5[</u>128]

OC Me

(229) Fe(SO₂C₆F₅)(CO)₂(C₅H₅) [106]

(228)(C₅H₅)Fe(CO)(carbene) [270]

(230) Ru(C₂Ph)(PPh₃)₂ (C₅H₅) CuCl [353]

(229a)[Fe(CO)₂(C₅H₅)CI]₄ Sb₂Cl₆[284]

(232)Co[[PhC₂CO₂Me)(CHCO₂Me)₂] (PPh₃)(C₅H₅) [314]

(231) $RuC_{6}F_{4}N=NC_{6}F_{5}$ ($Ph_{2}PC_{6}H_{4}C_{5}H_{4}$) [305]

66

(233) Co₃[P(O)(OMe)₂]₆(C₅H₅)₂[241]

(234) Ir (CO) (PPh3) (C5H5) [249]

(f) Cyclopentadienyl complexes containing other n-hydrocarbon ligands
 [Structures 235 - 252]

(236) Nb-C₂H₄ bond comparable to later transition metals, with H bent back from Nb. (238) From irradiation of WH₂(C₅H₅)₂ in mesitylene. (239)(240) Products from C₂(CF₃)₂ and MCl(CO)₃(C₅H₅) (M=Mo, W, respectively). (241) From Fe₂(CO)₉ + spiro[2,4-cyclopentadiene-1,7'-norcara-2',4'-diene]. (244)(245) Complexes from 6,6-diphenylpentafulvene and appropriate carbonyl. (247) No Fe-Fe bond, complex from 6,6-dimethylpentafulvene. (248) From nickelocene and dimethylkctene. (250)(251)(252) Some rotational disorder in CN group; Ph groups bent away from Co, in propeller configuration (twisted about axes 35°).

Other complexes containing n⁵-C₅H₅ groups: 266, 293, 294, 297, 299, 300, 305, 306, 307, 308, 309, 310, 317, 318, 319, 321, 327, 328, 330, 331, 332, 333, 351, 352, 353, 354, 359, 359a, 361, 362, 369, 379, 380, 381, 382, 382a, 382b, 383, 390, 392, 393.

(235) $ZrCl [CH_2CH(AlEt_2)_2]$ (C5H5)2 [221]

(236) NbEt(C₂H₄)(C₅H₅)₂ [131]

(238) W(CH₂C₆H₃Me₂)₂(C₅H₅)₂ [288]

(237) (C5H5)2 MoClEt [60]

(239) Mo[C(CF3)=C(CF3)C5H3 [C2(CF3)](C5H5) [105]

(240) WCL [C2(CF3)]2 (C5H5) [105]

(249) Co[C4Ph2(SiMe3)2] (C5H5) [280]

 $\begin{array}{ccc} (250) \operatorname{Co}(\operatorname{C_4Ph_4})(\operatorname{C_5H_4CN}) & (251) \operatorname{Co}(\operatorname{C_4Ph_4})(\operatorname{C_5H_4I}) \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ \end{array}$

(252) Co(C_Ph_)(C_H_L) [30]

Substituted ferrocenes (g)

[Structures 253 - 258]

(253) 4 independent molecules: 2 nearly prismatic (\$ 8°), 2 intermediate (\$ 21°). (255) Racemic form, m.p. 288°, rings totally eclipsed, dihedral 10°. (256) Twinned; confirms structure formed from $FcCMe_2^+ + C_5H_6$ stereospecifically; ring planes inclined 7° by H atom repulsion. (257) Confirmation and refinement using automatic diffractometer data; rings rotated by 8.5° from fully eclipsed. (258) Deformation of molecule to accommodate two endo-Me groups.

See also: 366a.

References p. 156

(258) Fe(C5H3CMe2CH2CMeFc)(C5H5)[269]

(h) Acyclic n⁵-ligands

[Structures 259 - 260]

(259) From $Mn_2(CO)_{10}$ and 2 trepone molecules, one opened to give first acyclic n^5 -dienyl-Mn complex. (260) Product from $Fe(CO)_3(C_7H_8) + Me_2$ maleate.

See also: 394.

(256) Fe(C₅H₅)(C₃H₁₅) [186]

70

I

(257) Fc (CH₂)₂ Fc [238]

(253) Fe(C5H5)(C5H3I2) (254 [58]

Ph

(255) Fe[C₅H₃(Me)CHŀnCH₂COC₅H₄] [211]

(260) Fe(CO)2[C7H8C2H2(CO2Me)2][146]

(259) Mn(CO)₃(C₄H₁O₂)[183]

n⁶-LIGANDS

(a) Cyclic n⁶-ligands (arenes)

[Structures 261 - 268]

(262) Structural studies in conjunction with NMR correlations, particularly axial Me located above naphthalene ring; some asymmetry in C_6 -Cr bond. (263a) Formed by pyrolysis of As-donor complex; one As disordered, (264) Planar Mo₂Cl₂ unit. (265) Dinitrogen complex, mesitylene not quite planar. (266) Zwitterionic complex from RuCl(PPh3)2(C5H5) + BPh4. (267) H located at ~ 1.7A from Ru.

See also: 360, 371, 372.

(261) [Cr(C₆H₆)]⁺

(262) Cr(CO)₃(C₂₀H₂₄)[245] (263) Cr(CO)₃[C₆H₄(CO₂H)Bu^t][127]

(b) Acyclic n⁶-ligands

[Structure 269]

(269) Complex contains two valence tautomers of cycloocta-1,3,5-triene

n⁷-LIGANDS

See 369, 377, 378.

n⁸-LIGANDS

[Structure 270]

(270) Shown to be isostructural with U, Th derivatives by powder pattern

only.

(270) Pa(C8H8)2 [163]

η-HETEROATOM LIGANDS

[Structures 271 - 273]

(271) Zwitterionic heterodiene, non-planar pyridazine ring.

(272)(273) Further examples of n-borabenzene complexes; Fe complex cis; in both M-B > M-C bond length.

(271) Fe(CO)₃(C₅H₅N₂O₂) [50]

References p. 156

(272) Mn(CO)₃(C₅H₅BPh) [123]

73

Me

(273) [Fe(CO)₂ (C₅H₅BMe)]₂ [123]

COPPER AND SILVER COMPLEXES

[Structures 274 - 281]

Complexes containing these elements have been listed separately because they often contain structural features not generally found with the other transition elements.

(274) Aromatic weakly bonded, displaced by olefin (indene) to give (275). (275) Not fully refined; indicates one benzene replaced by two olefins. (277) 2 parallel linear chains of Ag atoms, 3- and 4-coordinate, bridged by CF_3CO_2 and C_6H_6 . (278)(279) Ag interacts with localised double bonds. (280) No Ag-aromatic interaction; polymer formed by Ag-NO₃ chain. (281) Ag bonded to active CH₂ of one acac ring, also to ClO₄ and H₂O via O.

See also: 97, 137, 138, 226, 230, 373.

(275) No diagram available (276) No structure

(277) C_H_ (AgO CCF) [56]

(274) Cu4(O2CCF3)4(C6H6)2 [208]

75

 $(280) \left\{ Ag_2 \left[C_6 H_4 (CH_2 CH = CH_2) A SMe_2 \right] \right\}^{2+} (281) Fe(acac)_3 AgClO_4 H_2 O [149]$ [76]

POLYHEDRAL METALLOBORANE COMPLEXES

[Structures 282 - 288]

(282) Ligand attached by one H and CN to different Cu atoms. (283) Product from oxidative addition of $B_5H_8Br + IrBr(CO)(PMe_3)_2$; trans influence B₅H₈ > CO (Ir-Br, 2.638, 2.516Å, resp.); (204) Stabilisation of B-H species by electron-withdrawing group; (285) Mn bonded via 3 Mn-H-B bridges, 2 to

open face, 1 to base of cage; H_a rapidly exchanges between three B atoms. (286) Unit cell has dl pair of 5- and 7-THF isomers; open MnB₉ cluster. (287) Crystal contains pairs of 8- and 10-substituted isomers; ether cleaved, with rearrangement of MnB₉ in (286); (288) Earlier structure omitted from previous surveys; Fe bonded to B₄S; S and one B disordered.

(283) 2-[IrBr₂(CO)(PMe₃)₂] B₅H₈[39]

(284) { [Fe(CO)₄] B_7H_{12} [19] one H hidden behind B(2)

 $(286) 5-\text{thPf}-6-[Mn(CO)_3]B_9H_{12}$ [38]

(285) (CO)₃ Mn B₈H₁₃ [17]

76

 $\begin{array}{ll} (287) \ 6 - \left[Mn(CO)_3 \right] - 10 - \left[Et_3 N(CH_2)_4 O \right] & (288) \left[Fe(B_9 H_{10} S_2)_2 \right]^{2-} \left[378 \right] \\ B_9 H_{12} \left[119 \right] & \text{one B and S atoms disordered} \end{array}$

POLYHEDRAL METALLOCARBORANE COMPLEXES

In all structures Ø indicates carbon atoms.

[Structures 289 - 302]

(289) Approximate tricapped (by 2B,C) trigonal prism, Co bonded to 5B.

(291) Cyclobutadiene analogue, Pt caps prism. (292) Nido derivative, Pt in prism. (294) Distorted bicapped square antiprism. (295) 1,2,3-n³-Carbadiboraallyl ligand. (296) nido-Polyhedron, fluxional with mirror image. (297) Terminal 11-vertex octahedron (298) closo-Icosahedron, bicapped square antiprism. $(CoC_2B_8H_{10}).$ (299) Short Co-Co bond, distorted icosahedron. (300) 13-Apex docosahedron, Co bonded to non-planar 6-atom ring; fluxional. Carborane bonded via Rh-C o bond, Rh-H-B bridge bond. (301) (302) C-bonded carborane; one PPr_3^n ligand metallated to give 3-membered ring Pt-P-C, considered to be stabilised Pr2P=CHEt ligand.

(296) $[Pt(PEt_3)_2]Me_2C_2B_7H_7[174]$ (297) $[(C_5H_5)Co(C_2B_8H_{10})Co(C_2B_8H_{10})]^{-}[53]$

(294) 2,9-[Co(C₅H₅)]₂-1,10-C₂B₆H₈ [91]

 $P \equiv PEt_3$

PEt₃

Me

78

 $closo = 1 - [(Me_3P)_2Pt] = 6,8 - X_2C_2B_6H_6[46]$ (290) X = H; (291) X = Me

(293) 8-[Co(C5H5)]-6,7-C2B7H11 [36]

COMPLEXES CONTAINING METAL-METAL BONDS

(a) Homobinuclear transition metal complexes
 [Structures 303 - 328]

(303) H atoms located, planar W(µ-H)2W unit, short W-W interaction.

(304) X-ray and n.d., single bent W-H-W 2e,3-centre bond; NO disordered over 2 axial positions. (305) Short Cr=Cr triple bond, *trans* C₅ groups. (306)(307)(308) Classical structures redetermined to provide more accurate M-M bond lengths, in conjunction with NMR studies; bond lengths Cr >> Mo > W; Cr complex shows internal strain, steric crowding, giving Cr-Cr 0.06Å longer than Mo-Mo. (310) From [Mo(CO)₃(C₅H₅)]₂ + S(NBu^t)₂. (311) Another

classical structure redetermined, removing previous inconsistencies e.g. Fe-CO(terminal) < Fe-CO(bridge); record low angle at µ-CO (77.6°). (312) With (329) completes isoelectronic series of binuclear Co2, FeCo, Fe_2^{2-} carbonyls; Fe_2 diamion staggered (D_{3d}). (313) Contains semi-bridging CO group. (314) Long Fe-Fe bond, overall structure related to that suggested for 0s₂ (CO)₉; bridge CO symmetrical, all CO's rapidly scrambled. (316) Comparison with Fe₂N₂, Fe₂S₂ systems. (317)(319)(321) Series of structures determined in connection with NMR studies of intramolecular dynamics (cis-trans equilibria). (318) cis-C5 groups; contains bridging C=C(CN)₂ group, similar π -acceptor properties to bridge CO; compare with (220). (322)(323) Contain short Fe=Fe triple bonds. (325)(326) Both from benzocyclobutadiene-Fe(CO)₃ + Fe₃(CO)₁₂; sym and unsym isomers not Identity of Fischer's "Rh2(CO)4(C5H5)2" with this interconverted. (327) complex confirmed. (328) Early structure omitted from previous surveys; characterisation of bridging MeNC group, dihedral between 2 Ni_2CN planes 121.1°; short Ni-Ni bond.

(303) (NEt₄)₂[$W_2H_2(CO)_8$] [40]

(304) W₂H(CO)₉(NO) [48]

 $(305) \left[Cr(CO)_2 (C_5 Me_5) \right]_2 \left[252 \right]$

80

 $M_2(CO)_6(C_5H_5)$ (306) M = Cr [154]; (307) M = Mo[155] (308) M = W [155]

 $(309) [Cr(NO)_2(C_5H_5)]_2 [62]$

(310) [Mos(NBu^t)(C₅H₅)]₂ [193]

 $(312) \left[(Ph_{3}P)_{2}N \right]_{2} \left[Fe_{2}(CO)_{8} \right] \left[47 \right]$ (313) Fe₂(CO)₇(bipy) [176]

(315) No structure

(316) Fe₂(CO)₆[C₆H₄(NH)S][83]

Ph

(314) Fe₂(CO)₇(dppm) [299]

References p. 156

(326) Fe₂(CO)₆(C₈H₆) [121] (327) Rh₂(CO)₃(C₅H₅)₂[109] (328) [Ni(CNMe)(C₅H₅)]₂[130]

(b) Heterobinuclear transition metal complexes
 [Structures 329 - 333]

(329) Comparison with (312), Co₂(CO)₈ revealed unusual differences,
Co, Fe not distinguished, illustrated arrangement favoured.
(330)(331)(332)(333) Series of complexes studied in connection with IR studies of bridge-terminal CO equilibria; non-planar distorted M(CO)₂M¹ units, dihedral 148.0° (330), 154.6° (331), 133.7° (333).

References p. 156

(C₅H₄Me) [141]

(331) FeCo(CO)₅(PMePh₂) (C₅H₅) [243]

Et₃P C Ni-

(334) No structure

(333) CoNi(CO)₄(PEt₃)(C₅H₅) [148]

(c) Polynuclear clusters containing CO, PR3 ligands

[Structures 335 - 346]

(335) Corrects $[H_2Mn_3(CO)_{12}]^-$ formulation; comments on linear vs bent M-M-M and M-H-M bonds. (336) Increased precision, 2 disordered 'half-molecules' resolved; unsymmetrical CO bridges, solution dynamic behaviour discussed. (337)(338) M-M bond lengths discussed in terms of *closo* structure or electron deficiency. (340) Twinned, disordered; Ir prefers apical position with only terminal CO. (341) Co, Ni not distinguished in octahedral cluster, statistical distribution. (342) Comparison with (343) shows unprecedented differences in geometries adopted by congener elements as result of steric requirements. (343)(344)(345)(346) Series of cluster anions formed by stacking triangular Pt(CO)₃(µ-CO)₃ units; resulting Pt-Pt bonds same as in metal; steric requirements cause twisting of stack.

P(OPh)₃

(339) No structure

CO

isomerA M=Ir,M'=Co isomerB M=Co,M'=Ir Proportion A:B=1:5 (340) Co2Ir2(CO)12 [100]

ဝ

(343)

Building block in $\left[\text{Pt}_3(\text{CO})_3(\mu\text{-CO})_3 \right]^{2-}$ = [103]

 $[Pt_3(CO)_3(\mu - CO)_3]_2^2$

(335) [Mn₃(CO)₁₄] [136]

(PhO)₃P

OC

(336) Fe₃(CO)₁₂[101]

(337) Fe₂Pt(CO)₉(PPh₃) [273]

86

(d) Polynuclear clusters containing Main Group Elements [Structures 347 - 359a] (347) 3 semi-bridging CO groups, octahedrally coordinated C atom. (348) First completely asymmetric cluster. (349) Central Rh linked to 12 other metal atoms. (351) Paramagnetic, from Ni(C₅H₅)₂ + S(NBu^E)₂. (352) 3 of 4 faces bridged by H. (353) N.d.; symmetrical bridging H, bent 3-centre Mo-H-Mo bond. (354) Ligands crowd Mn₂As nucleus, result in bent Mn-C-O (160°). (355) From isomer by insertion of bridging AsMe₂ group. (356) From cis-CF₃C(AsMe₂)=C(CF₃)AsMe. (357) (358) Planar Mn₂M₂ ring. (359) Cis form, structure determined in connection with IR, NMR studies of molecular dynamic properties. (359a) Open Fe-Rh-Fe system confirms prediction of unstable *closo-*cluster resulting from substitution of CO by highly basic PPh2 groups.

(353) Mo₂H(CO)₄(PMe₂)(C₅H₅) [164]

(355) $Mn_2(CO)_8(ASMe_2) \left[C_4F_4(ASMe_2)\right]$ (356) $Mn_2(CO)_6(ASMe_2) \left[(Me_2AS)_2C_4F_5\right]$ [157] [165]

 $M_2 Mn_4 (CO)_{18}$ (357) M = Ga; (358) M = In [195,196]

(359) Fe₂(GeMe₂)(CO)₃(C₅H₅)₂[147]

Me

Me

 $(359a) \left[Fe_2 Rh(CO)_4 (PPh_2)_2 (C_5 H_4 Me)_2 \right]^+ [330]$

(e) Polynuclear clusters containing n-hydrocarbon ligands

[Structures 360 - 373]

(360) Apparent folding of arene molecules not significant from disorder; Nb-Nb bond order $\frac{1}{3}$. (361) Little Nb-Nb interaction, paramagnetic, cluster held by formate, OH and O bridges. (362) Solved by direct methods gives no evidence of disorder (cf. ref. 143). (363) 2 unsymmetrical bridging CO; correlation of Fe-Fe bond lengths with degree of symmetry of CO bridge in several Fe complexes. (364)(365) Formation of (364) from (365) involves CO elimination, M-M bond formation, and changes in PPh₂ bridge (see diagram); (364) Contains ferracyclobutene system. (366) CO₂Me group derived from methanol + CO group. (366a) First ferrocene derivative with metal-metal bond involving central iron atom; C₅H₅ group also bridges Au atoms. (367)(368) Stabilisation of pentalene and derivatives on Ru₃ clusters. (369) One C₈H₉ is η^5 -tetrahydropentalenyl; second apparently attached to two Ru by 7 out of 8 carbons, geometry indicates isolated CH₂ group. (370) Same structure in 2 crystal forms. (373) Non-linear transoid Ir-CEC-Ph (not *cis* bent); formal M-M bond order $\frac{3}{4}$.

(360) [Nb₃Cl₆(C₆Me₆)₃]⁺[309]

References p. 156

(361) [(C_H_)Nb (O,CH)(OH)]30 [187,188]

Ar = Ph (373) $Ir_2Cu_4(C_2Ph)_8(PPh_3)_2$ [372]

(f) Complexes containing Transition Metal-Main Group metal bonds
 [Structures 375 - 398]
 (375) 3-coordinate planar Sn in new ligand R₂Sn (R = bulky group).

(376) Capped (Cl) trigonal prism. (380) Covalent Mo-Mg bond, H not located. (384)(385)(386) Cd-Mn bond gives distorted octahedral Mn; comparison 4- and 5-coordinate Cd, effective increase of $\sim 0.1 \text{\AA}$ in covalent radius. (399) Planar carbene, 8-membered (ReGeOC)₂ ring. (390) 2 rotational isomers (88:12) disordered in unit cell; show interconversion by NMR. (392) Ph-C=C, 153°. (393) "Inorganic Grignard". (394) Exo Configuration for migrant SiMe₃ group [from Ru(SiMe₃)₂(CO)₄]. (395) Linear Sn-Os-Sn sequence. (398) Intermediate geometry (between TBP and SP); all H atoms located (in presence Cl, P, Sn, Ir).

(381) [(C_H_)(CO)_MOZnCI(OEt_)]2 [156]

92

(382) [Mo(CO)₃(C₅H₅)]₂ Zn [156]

(389) [Re(CO)₄(Me₂GeOCMe)]₂ [166]

(388) (391) (397) No structures

(390) [Fe(CO)₂(C₅H₅) GeMe₂]₂O [190]

(393) (C₅H₅) (dppe) FeMgBr

[324]

(392) Fe(SnPh₃)(CO) (C₂Ph₂) [317]

(395) Os(CO)₄ (SnPh₃)₂ [326]

(394) Ru(SiMe3)(CO)2

(396) Co(GeCl₃)(CO)₄ (3 [20]

HYDRIDE COMPLEXES

[Structures 399 - 403]

(399) H not located, but H-H interactions indicate they occupy 3 equatorial positions in pentagonal bipyramid. (401) Non-stoichiometric Ni complex (n \sim 0.5), all molecules identical whether containing H or not, i.e. statistical 1:1 occupancy. (402) (403) H located in latter only. See also: 29, 36, 37, 100, 103, 104, 213, 267, 282, 285, 286, 287, 303, 304, 350, 352, 353, 379, 380, 382a, 383, 423.

 $(399) \text{ ReH}_3(\text{dppe})_2[375]$ (400) CoH(np₃) [373] (401) [NiH(np₃)]BF₄ [374]

(402) RuH(O₂CH)(PPh₃)₃ [376]

(403) RuH(OAc)(PPh₃)₃ [377]

NITROSYLS

[Structures 404 - 424a]

(404) 3 independent measurements (2 crystal forms, one having 2 independent molecules). (405) Linear NO, isoelectronic with Fe-CO in carbonyl-haem. (407) From one-electron reduction of $[Fe(NO)(CN)_5]^{3-}$, with dissociation of CN. (408) From NO⁺ and dimeric $[FeL]_2$ complex. (410)(411) Cubane geometry [see also (422)]; comparison with $Fe_4S_4(C_5H_5)_4$ and $[Fe_4(SR)_4S_4]^{2-}$ shows gross dissimilarities in bonding. (413) Pseudoperiodicity hampers identification NO, Cl; best R 22%. (417) Ru-N bond lengths in similar complexes indicate NO⁺ stronger π -acid than ArN_2^{+} . (418) Cl, NO disordered. (419) Both NO disordered between positions A, B. (422) From Co(NO)(CO)₂(PPh₃) + S(NBu^t)₂; distorted cube disagrees with first-order Jahn-Teller predictions. (423) Brown isomer, H not located, both P apical (cf. black isomer apical NO, H). (424) Close approach of 2 0 from NO indicates possible NO⁺-NO⁻ interaction.

See also: 22, 23, 33, 217, 218, 219, 304, 309, 324, 362.

(405) Mn(NO)(Mepip)TPP [39] (Ph groups omitted)

(404) MnCI(NO)2[PPh(OMe)2]2[382]

(406) Re(NO)Cl2(PMePh2)3 [390]

(408) Inner coordination sphere of $[(FeL)_2NO]PF_6$ $[L = S(CH_2)_2NMe_2(CH_2)_2NMe(CH_2)_2S]$ [348]

(410) Fe4(NO)4(S)4 [380]

PPh

(411) Fe4 (NO)4 (NBut)2(S)2 [380]

(414) [Ru(NO)(NH₃)₅]Cl₃ [393]

(418) RuCl(SO₄)(NO) site ((PPh₃)₂ [387] (419) CoI(

M(NO)2(PPh3)2

(412) M = Fe [388]; (416) M = Ru [389]

(417) RuCl₃(NO)(PMePh₂)₂ [386]

(413) [RuCl₅(NO)]²⁻[394]

.CL

CL

CL

(415) [Ru(NO)(OH)(NH₃)₄]Cl₂ [393]

Ph site occuancy $\frac{2}{3}A\frac{1}{3}B$ (419) CoI(NO)₂[Ph₂P(O)(CH₂)₂ PPh₂] [385]

(420) R = Me Co(NO)(ea) [381] (421) R = Ph Co(NO)(eb)

References p. 156

DINITROGEN, ARYLDIAZO, ARYLDIIMINE AND RELATED COMPLEXES

[Structures 425 - 429]

(425) Almost linear Re-N-N-Mo system. (426) Linear W-N-N indicates
W=N-NH , N-N bond order 1.5. (427) Linear Re-N-N indicates Re-N-NHPh.
(428) Cis diazene, N-H refined; model complex in proposed N₂-fixation
reaction. (429) Linear Cl-Re-N-Me.
See also: 265.

P ≡ PMe₂Ph

(425) [(PhMe₂P)₄CIReN₂MoCl₄(OMe)] [397]

(426) [W(N,H) CL (dppe)] BPh [400]

(427) [ReCl₂(NH₃)(N₂HPh)(PMe₂Ph)₂]Br [399]

alternative positions of N Indicated (429) $[Re(NMe)CI(NH_2Me)_4](CIO_4)_2[401]$

BINARY TRANSITION METAL - TERTIARY PHOSPHINE COMPLEXES

[Structures 430 - 432]

(430) Short Pd-P (2.278Å), P-Pd-P 176.8°; interaction of two ortho hydrogens with each other (2.4Å), and with Pd (2.73, 2.79Å), suggests 3-centre bond. (431) P-Pd-P 158.4°, no H...H interactions less than 2.32A; differing geometry [from (430)] not explained. (432) Cation trigonal, nearly planar, with minimal Au-P π -bonding; anion is open icosahedral B₉H₁₂S⁻ fragment.

1584 Cy Cy Су

(431) Pd(PCy3)2[404]

(430)Pd(PBu2Ph)2[403,404]

Structures ordered by metal

Nd:	182.
Th:	183.
Fa:	270.
U:	184.
Ti:	185, 202, 203, 204, 205.
Zr:	191, 192, 193, 195, 235.
HE :	194.
⊽:	1.
Nb:	196, 197, 209, 213, 214, 236, 360, 361.
Ta:	29, 65, 66.

- Cr: 3, 6, 11, 13, 62, 63, 67, 106a, 113, 166, 210, 261, 262, 263, 263a, 305, 306, 309, 375.
- Mo: 7, 8, 9, 10, 14, 39, 68, 114, 143, 145, 146, 162, 168, 198, 199, 206, 207, 208, 211, 215, 216, 217, 218, 219, 220, 237, 239, 264, 265, 307, 310, 353, 376, 377, 378, 379, 380, 381, 382, 382a, 382b.
- W: 12, 30, 31, 32, 40, 41, 42, 64, 144, 210, 211, 212, 238, 240, 303, 304, 308, 383, 426.
- Mn: 15, 16, 50, 70, 71, 109, 139, 221, 222, 222a, 259, 272, 285, 286, 287, 335, 354, 355, 356, 357, 358, 362, 384, 385, 386, 387, 404, 405.
- Re: 43, 44, 45, 137, 200, 389, 399, 406, 425, 427, 429.
- Fe: 4, 17, 18, 19, 20, 21, 22, 72, 73, 110, 115, 116, 129a, 147, 167, 169, 170, 171, 172, 173, 174, 175, 176, 177, 179, 181, 223, 224, 225, 226, 227, 228, 229, 229a, 241, 244, 247, 253, 254, 255, 256, 257, 258, 260, 269, 271, 273, 284, 288, 311, 312, 313, 314, 316, 317, 318, 319, 321, 322, 323, 324, 325, 326, 329, 330, 331, 332, 336, 337, 338, 347, 359, 359a, 363, 364, 365, 366, 366a, 390, 392, 393, 407, 408, 409, 410, 411, 412.
- Ru: 33, 46, 49, 51, 52, 103, 163, 201, 230, 251, 245, 266, 267, 367, 369, 369, 394, 402, 403, 413, 414, 415, 416, 417, 418.
- Os: 350, 370, 395.
- co: 2, 23, 23a, 74, 75, 76, 77, 78, 79, 136, 148, 188, 189, 232, 233, 249, 250, 251, 252, 289, 293, 294, 297, 299, 300, 329, 330, 331, 332, 333, 340, 341
 371, 372, 396, 400, 419, 420, 421, 422.
- Rh: 5, 24, 25, 25a, 47, 48, 53, 54, 55, 56, 80, 110a, 117, 118, 138, 148a, 156, 158, 164, 165, 178, 207, 242, 243, 268, 301, 327, 348, 349, 359a.
- Ir: 26, 34, 35, 36, 37, 82, 83, 99, 100, 104, 159, 234, 283, 340, 373, 398, 423.
- Ni: 27, 28, 57, 84, 85, 86, 119, 120, 130, 140, 141, 149a, 150, 151, 151a, 152,

152a, 153, 165a, 190, 208, 209, 248, 295, 328, 333, 341, 342, 351, 352, 401.

Pd: 87, 101, 102, 105, 107, 108, 121, 122, 131, 132, 142, 154, 155, 157, 430, 431 Pt: 39, 58, 59, 60, 61, 88, 89, 90, 91, 92, 93, 94, 95, 106, 108a, 111, 112, 123, 124, 125, 126, 127, 128, 129, 133, 134, 135, 136, 290, 291, 292, 296, 298, 302, 337, 338, 343, 344, 345, 346, 424, 424a, 428.

Cu: 96, 137, 226, 230, 274, 275, 282, 373. Ag: 97, 138, 277, 278, 279, 280, 281. Au: 366a, 432.

TABLE 1 Metal-metal bond length determinations (1974)

Bond	Length (Å)	Complex		Reference
ND-ND	3.140(av.)	[Nb (02CH) (C5H5)]3 (OH) 202		187,188
	3.334(6)	$[Nb_{3}Cl_{6}(C_{6}H_{3}Me_{3})_{3}]^{+}$		309
Nb-Ni	2.771(5)	$[(C_5H_5)_2Nb(SMe)_2]_2Ni]^{2+}$		253
Cr-Sn	2.562(5)	$Cr{Sn[CH(SiMe_3)_2]_2}(CO)_5$		204
Cr-As	2.480(1)	[Cr(CO)4]2(AsMe2)4		170
Cr-Cr	2.280(2)	$[Cr(C0)_2(C_5Me_5)]_2$		252
	2.615(1)	$[Cr(NO)_2(C_5H_5)]_2$		62
	3.281	$[Cr(C0)_{3}(C_{5}H_{5})]_{2}$		154
Mo-Li	2.70(av.)	$[MoHLi(C_5H_5)]_4$	ang	331
Mo-Mg	2.74	[(C ₅ H ₅) ₂ MoHMgCyBr ₂ Mg(OEt ₂)] ₂	Mo-MgCy	333
· · · · ·	2.85		Mo-Mg(OEt ₂)	
Mo-Al	2.656(av.)	$[MoH(C_5H_5)(C_5H_4)]_2A1_3Me_5$		264,265
	2.656,2.685(3)	$[Mo(C_5H_4)_2A1_2Me_3]_2$		264
	2.973(av.)	$[MoH(C_5H_5)(C_5H_4)]_2Al_3Me_5$	Мо-н-А1	264,265
Mo-Sn	2.717(1)	Mo (SnCl ₂ Ph) (CO) ₂ (C ₇ H ₇)		140

	2.739(1)	$Mo(SnClPh_2)(CO)_2(C_7H_7)$		140
Mo-Mo	2.148(2)	Li ₄ [Mo ₂ Me ₈].4C ₄ H ₈ O		45
	2.920(1)	$[Mo(NBut)S(C_5H_5)]_2$		193
	3.105(5)	$Mo_2(CO)_6(AsPr^n)_8$		151
	3.235(1)	$[Mo(CO)_3(C_5H_5)]_2$		155
	3.267(2)	$Mo_2(CO)_4(C_5H_5)_2H(PMe_2)$	Mo-H-Mo	164
Mo-Hg	2.700(7)	MoCl(HgCl)(CO) ₃ (bipy)		107
Mo-Zn	2.538(1)	$Zn[Mo(CO)_{3}(C_{5}H_{5})]_{2}$		156
	2.632(1)	[(C ₅ H ₅)Mo(CO) ₃ ZnCl(OEt ₂)] ₂		156
W-Li	2.69(av.)	[WHLi(C ₅ H ₅)] ₄		331
W-W	3.0162(11)	$[W_2H_2(CO)_8]^{2-}$		40
	3.222(1)	[w(co) ₃ (c ₅ H ₅)] ₂		155
	3.328(3)	α-₩2H(CO) 9(NO)	W-H-W (n.d.)	48
	3,3292(12)	$\alpha - W_2 H(CO)_9(NO)$	(x-ray)	48
	3.330(3)	β-W2H(CO)9(NO)	(n`.d.)	48
Mn-Ga	2.451(1)	$Mn_2(CO)_8[GaMn(CO)_5]_2$		195,196
Mn-In	2.605(1)	$Mn_2(CO)_8[InMn(CO)_5]_2$		195,196
Mn-Sn	2.67,2.73	$[Mn(CO)_{5}]_{4}Sn_{2}H_{2}$		205
Mn-As	2.350(4)	$Mn_2(AsMe_2)(CO)_6(C_5H_5)$	As-Mn(CO)4	111
	2.362(4)		$As-Mn(C_5H_5)$	11.1
Mn-Mn	2,506(3)	$Mn_3(NO)_4(C_5H_5)_3$		142
	2.518(2)	$Mn_2(CO)_7{N:C(CF_3)_2}_2$		120
	2.895(av.)	[Mn ₃ (CO) ₁₄]		136
	2.912(4)	$Mn_2(AsMe_2)(CO)_6(C_5H_5)$		111
	3.052(1)	$Mn_2(CO)_8[GaMn(CO)_5]_2$		195,196
	3.227(1)	$Mn_2(CO)_8[InMn(CO)_5]_2$		195, 196
Mn-Cd	2.681(av.)	(phen)Cd[Mn(CO) ₅] ₂		206

References p. 156

가장 아는 것이 것을 가장 못한 가장 있는 것 같아요. 또 같이 같은 것은 것을 가장 못한 것을 것을 것 같아요. 같이 같은 것은 것을 가장 못한 것을 것 같아요.					
2.683(av.)	(bipy)Cd[Mn(CO)5]2				
2.711(av.)	(diglyme)Cd[in(CO) ₅] ₂				
2.591(3)	$[Re(GeMe_2)(CO)_4C(0)Me]_2$				
3.078(3)	$ReCu(C_2C_6F_5)_2(CO)_3(PPh_3)_2$				
2.593(7)	(C ₅ H ₅)Fe(dppe)MgBr(thf) ₂				

2.5 Fe-Mg 1.805(38)- $[Fe_6C(C0)_{16}]^{2^-}$ Fe-C 1.968(38) 2.346(1) $Fe_2(GeMe_2)(CO)_3(C_5H_5)_2$ Fe-Ge 2.372(av.) $[Fe(GeMe_2)(CO)_2(C_5H_5)]_2O$ 2.56 $Fe(SnPh_3)(CO)(C_2Ph_2)(C_5H_5)$ Fe-Sn $Fe_2(CO)_3(C_4Bu_2^TPh_2)_2$ Fe-Fe 2.177(3) 2.326(4) $[Fe(NO)(C_5H_5)]_2$ 2.411(1) $Fe_2(CO)_6[C_6H_4(NH)S]$ $[(FeL)_2NO]^{+a}$ 2.468(2) $Fe_4 (NO)_4 S_2 (NBu^{L})_2$ 2.496(1) Fe₂N₂ 2.511(4) $Fe_2(CO)_3[C:C(CN)_2](C_5H_5)_2$ $Fe_3(CO)_8[Ph_2PC_4(CF_3)_2](PPh_2)$ 2.514(3)2.523(1) Fe2(CO)9 $Fe_{2}(CO)_{3}(CNBu^{t})(C_{5}H_{5})_{2}$ 2,523(2) 2.532(11) $Fe_3(CO)_7[Ph_2PC_4(CF_3)_2](PPl_2)$ 2.538(1) $[Fe(CO)(CNMe)(C_5H_5)]_2$ 2,545(2) $Fe_2(CO)_3[P(OPh)_3](C_5H_5)_2$ 2.553-2.632 [Fe₆C(CO)₁₆]²⁻ bridged Fe3(CO)12 2.558(1) CO-bridged $Fe_4(NO)_4S_2(NBu^t)_2$ 2.562(1) Fe₂SN

 $[Fe(CO)_2(C_5H_5BMe)]_2$

Fe₂(CO)₇(bipy)

Fe3(CO)8(C4H8S)2

2.574(2)

2.611(2)

2.611

123 176

162

206

159

166

361

324

183

147

190

317

278

63

83

384

380

118

315

54

185

310

160

298

183

101

380

(non-bonding)

Re-Ge

Re-Cu

2.628(1) $Fe_2(GeNe_2)(CO)_3(C_5H_5)_2$ 147 2.634(av.) 380 Fe4 (NO) 4 S4 2.642(1) Fe_4 (NO) $_4S_2$ (NBu^L) $_2$ 380 Fe₂S₂ 2.645(2) $Fe_3(CO)_8(C_4H_8S)_2$ CO-bridged 162 2.646 - 2.743(10) $[Fe_6C(C0)_{16}]^{2-}$ 183 non-bridged 2.665(8) 310 $Fe_3(CO)_7[Ph_2PC_4(CF_3)_2](PPh_2)$ 2.677,2.683 $Fe_3(CO)_{12}$ 101 2.681(av.) $Fe_3(CO)_7[Ph_2PC_4(CF_3)_2](CO_2Me)(PPh_2)$ 321 2,709(2) Fe₂(CO)₇(dppm) 299 2:758(8) Fe₂Pt(CO)₉(PPh₃) 273 2,765 Fe₂(CO)₅(Ph₂fulvene) 226 2.787(2) [Fe2(CO)8]2~ 47 Fe-Co 2.540(4) FeCo(CO)₅(PMePh₂) 243 $FeCo(CO)_3(Me_2C_4H_4)(C_5H_4Me)$ 2.5460(10) 141 2.552(2) FeCo(CO)₆(ind) 138 [FeCo(CO)₈] 47 2,585(3) $\{[Fe(PPh_2)(CO)(C_5H_4Me)]_2Rh\}^+$ Fe-Rh 2.659,2.674(1) 330 Fe-Pt 2,530(5) FepPt(CO)9(PPh3) 'cis'-PPha 273 2.550(5) FePt₂(CO)₅[P(OPh)₃]₃ 364 Fe-Pt(CO)P 2.583(6) $FePt_2(CO)_5[P(OPh)_3]_3$ Fe-PtP2 364 'trans'-PPh3 2.597(5) $Fe_2Pt(CO)_9(PPh_3)$ 273 [FcAu₂(PPh₃)₂]⁺ Fe-Au 2.819(9) 348,349 Ru-Si 2.43 $\operatorname{Ru}(\operatorname{SiMe}_3)(\operatorname{CO})_2[\operatorname{C}_7\operatorname{H}_7(\operatorname{C}_6\operatorname{F}_5)\operatorname{SiMe}_3]$ 228 Ru-Ru 2.806(1) $\operatorname{Ru}_3(\operatorname{CO})_{\mathrm{B}}[\operatorname{C}_{\mathrm{B}}\operatorname{H}_4(\operatorname{SiMe}_3)_2]$ 240 2.81 $Ru_3(CO)_6(C_8H_6)$ 153 2.835 237 $Ru_{3}(CO)_{6}(C_{8}H_{9})_{2}$ CO-bridged 2.845 Ru₂(CO)₅(Ph₂fulvene) 242

References p. 156

106				
	2.853	Ru ₃ (CO) ₆ (C ₈ H ₉) ₂	C ₈ H ₉ -wrapped	237
	2.930(1)	$Ru_{3}(CO)_{8}[C_{8}H_{4}(SiMe_{3})_{2}]$	C ₈ H ₄ R ₂ -bridged	240
	2.94	$Ru_3(CO)_6(C_8H_6)$	C ₈ H ₆ -bridged	153
0s-Sn	2.711(1)	0s(SnPh ₃) ₂ (CO) ₄		326
0s-0s	2.732(2); 2.741(2)*	0s3(C0)9(C4Ph4)	(CO) ₂ 0s-0s(CO) ₄	311
에 가는 것을 지금 것 같아.	2.729(2); 2.739(1) [*]	0s3(CO)9(C4Ph4)	(CO) ₂ 0s-0s(CO) ₃	311
	2.84	Оз ₃ H ₃ (СМе) (СО) ₉		71
	2.917; 2.894(1)*	$0_{s_3}(C0)_{9}(C_4Ph_4)$	$(CO)_{3}Os - Os(CO)_{4}$	311
	[* values for (o	rthorhombic; monoclinic) modifie	ations]	
Co-Ge	2.310(7)	Co(GeC1 ₃)(CO) ₄		20
Co-Co	2.387(2)	$(C_5H_5C_0)_2C_2B_8H_{10}$		92
	2.454(2)	$Co_4(CO)_9(C_6H_4Me_2)$		137
	2.457(2)	Co4 (CO) 9 (C6H6)	basal	137
	2.460(2)	$Co_4 (NO)_4 (NBu^{L})_4$		383
	2.472-2.491(2)	$C_{0_4}(C_0)_9(C_6H_4Me_2)$	base-apex	137
-	2.485(1)	Co4 (CO) 9 (C6H6)	base-apex	137
	2.489(1)	(C ₅ H ₅ Co) ₂ C ₂ B ₆ H ₈		91
	2.544(2)	Co4(NO)4(NBu ^t)4		383
M-M (Co,Ir	2.594-2.693)	Co ₂ Ir ₂ (CO) ₁₂		100
Co-Ni	2.4097(8)	$CoNi(CO)_4(PEt_3)(C_5H_5)$		148
M-M	2.487(1)	$[Co_4Ni_2(CO)_{14}]^{2-}$	basal	135
(CO,NI) 2.519(1)	$[Co_4Ni_2(CO)_{14}]^{2-}$	between	135
Rh-C	2.06	$[Rh_{15}C_2(CO)_{28}]^{2-}$		224
	2.127	Rh ₈ C(CO) ₁₉		224
Rh-Rh	2.51	[Rh(CPh ₂)Cl(py)] ₂ CO		312
	2.699-2.913(3)	Rh ₈ C(CO) ₁₉		224

	2.738-3.091(3)	[Rh ₁₅ C ₂ (CO) ₂₈] ²⁻	31 edges	224
	3.332(3)	$[Rh_{15}C_2(CO)_{28}]^{2-}$	2 edges	224
Rh-Ag	3.086,3.102	RhAg ₂ (C ₂ C ₆ F ₅) ₅ (PFh ₃) ₃	non-bonding	371
Ir-Sn	2.5867(6)	$Ir(SnCl_3)(C_7H_8)(PMe_2Ph)_2$		246
Ir-Ir	2.759(2)	[IrH(CO)2(PPh3)]2SO2		. 328
Ir-Cu	2.776-2.959(4)	$Ir_2Cu_4(C_2Ph)_8(PPh_3)_2$		372
Ni-Ni	2.3217(8)	[Ni(CNMe)(C ₅ H ₅)] ₂		130
	2.364 (av.)	$Ni_{3}(Bu^{t})(C_{5}H_{5})_{3}$		202
	2.38	${[Ni_3(CO)_6]_2}^{2-}$	intra-∆	102
	2.464	Ni4H3(C5H5)4		215
	2.577(5)	$Ni_2(CO)_3[S[P(CF_3)_2]_2]_2$		81
	2.77	${[NL_3(C0)_6]_2}^{2-}$	inter-∆	102
Pt-Pt	2.633(1)	$FePt_2(CO)_5[P(OPh)_3]_3$		364
	2.66	${[Pt_3(C0)_6]_n}^{2-}$ (n = 2,3,5)	intra-∆	103
	3.04(av.)	${[Pt_3(C0)_6]_2}^{2-}$	inter-∆	103
	3.05(av.)	{[Pt ₃ (CO) ₆] ₃ } ²⁻	inter-∆	103
	3.08(av.)	{[Pt ₃ (CO) ₆] ₅ } ²	inter-∆	103
Cu-Cu	2.665-2.823	$Ir_2Cu_4(C_2Ph)_8(PPh_3)_2$		372
•	2.843(3)	Cu ₂ [(CH ₂) ₂ PMe ₂] ₂		44
	3.07(1)	Cu4(02CCF3)4(C6K6)2		208
Au-Au	2.768(3)	$[FcAu_2(PPh_3)_2]^+$		348,349

 α L = S(CH₂)₂NNe(CH₂)₂NMe(CH₂)₂S.

References p. 156

ŝ

TABLE 2 Parameters for M-N	-0 Groups			
Complex	M-N(Å)	N-O(A)	M-N-0(°)	Reference
(i) Terminal NO				
$[Cr(NO)_2(C_5H_5)]_2$ (terminal)	1.690(3)	1.181(4)	175.6(5)	62
Mn(NO)(Mpip)(TPP)	1.644(5)	1.176(7)	176.2(5)	391
$Mn(NO)_2C1[PPh(OMe)_2]_2$	1.63	1.20	165	382
$Re(NO)Cl_2(PMePh_2)_3$	1.775(10)	1.182(14)	178.8(14)	390
[Fe(NO)(CN) ₄]	1.565	1.161	177.1	379
Fe(NO)(Meim)(TFP)	1.743(4)	1.121(8)	142.1(6)	391
$Fe(NO)_2(CO)(PPh_3)^{\alpha}$	1.690(8)- 1.732(8)	1.147(12)- 1.150(8)	177.3(11)- 178.9(6)	199
$Fe(NO)_2(PPh_3)_2$	1.650(7)	1.190(10)	178.2(7)	388
Fe4 (NO)4 S4	1.661(5) 1.666(5)	1.143(6)- 1.171(6)	176.9(5)- 178.7(5)	380
$Fe_4(NO)_4S_2(NBu^t)_2$	1.653(6)- 1.668(6)	1.158(8)- 1.173(7)	177.8(4)- 179.4(7)	380
Ru(NO) ₂ (PPh ₃) ₂	(1.762(6) (1.776(6)	{1.190(7) 1.194(7)	{177.7(6) 170.6(5)	389
$Ru(NO)I(CO)(PPh_3)_2$	1.80(4)	1.15(5)	159(2)	313
Ru(NO)Cl ₃ (PMePh ₂) ₂	1.744(6)	1.132(6)	176.4(6)	386
Ku(NO)C1(S04)(PPh3)2	1.80(3)	1.07(4)	175(3)	387
$[Ru(NO)(NH_3)_5]^{3+}$	1.735(3)	1.159(5)	173.8(3)	393
[Ru(NO) (OH) (NH ₃) ₄] ²⁺	1.770(9)	1.172(14)	172.8(9)	393
Co(NO) (ea)	1.821(9)	1.093(16)	122.4(9)	381
Co(NO)(eb)	1.831(11)	1.136(26)	122.9(8)	381
Co(NO)I(dppe0)	1.677(20)	1.052(17)	Ъ	385
Co4 (NO)4 (NBu ^t)4	{1.645(9) 1.662(10)	$ \begin{cases} 1.16(1) \\ 1.15(1) \end{cases} $	{174(1) 168(1)	383
[Ir(NO)H(PPh ₃) ₃] ^{+ c}	1.80(2)	1.14(3)	174.5(21)	392
[Pt2(NO)2C15]	1.98(6)	1.05(6)	122(5)	396

	*	•		
[Pt2(NO)2C18]	2.15	1.18	112	395
(ii) Eridging NO		· .		
$[Cr(NO)_{2}(C_{5}H_{5})]_{2}$	1.960	1.193(4)	136.4(3)	62
$[Fe(NO)(C_5H_5)]_2$	1.768	1.254(12)	138.8(8)	63
$[(FeL)_2 NO]^+ d$	1.818(5)	1.193(8)	137.2	384
$[Pt_2(NO)_2Cl_5]^{-1}$		1.27(5)		395

a CO, NO disordered.

b Disordered 0 atoms in 2 positions, A:B = 67:33; bond angles:

O(1A), 120.5(19); O(1B), 166.3(26); O(2A), 154.6(43); O(2B), 149.0(57).

c Brown isomer.

 $d_{L} = S(CH_2)_2 NMe(CH_2)_2 NMe(CH_2)_2 S.$

Ż

 $= \sum_{i \in I}$ TABLE 3 Crystal structure data: Grganomotallics Formila

.

lumber	Formila	Formula				
5 2C ₂ Cl ₂ O ₂ Rh ⁻ .C ₃₆ H ₄₆ N ₄ ⁺		серн ₄ [RhCl ₂ (CO) ₂]2	Tet	P4/n	4	
65	C3HgCl2N4O4Te	TaCl ₂ Me[ON(Me)NO]2	H	P2 ₁ /n	4	
285	C ₃ H _{I3} B ₈ mO ₃	Mn (CO) 3 (B8H13)	0	Paca	4	
97	C 3 A 2 N 3 O	AgC (CN) ₂ (NO)	O	Рьса	8	
284	C4H12B7Fe04 .C16H36N	NBu4 [Fe (CO)4 (B7H12)]	M	P21/c	4	
396	C4Cl3CoGeO4	Co (GeCl3) (CO) 4	м	Cc	8	
2	C4C004T1	T1[Co(CO),]	Cub	Р2 <mark>1</mark> 3	4	
			·			
127	C ₅ H ₁₂ Cl ₃ Pt	PtCl ₃ (C ₅ H ₉ NH ₃) ²	X .	P21/c	.4	
3	C5Cr105 . C9H27N4P4 ⁺	N ₄ 7 ₄ Me ₉ [CrI(CO) ₅]	Tri	рī	2	
4	C ₅ FeNO4 - C ₃₆ H ₃₀ NP2 +	$N(PPh_3)_2[Fe(CN)(CO)_1]$	м	P21/c	4	
10	ϹϛϺͻϴϛℙϧϚϡ	Mo (CO) 5 (P4S3)	Я	P21/c	8.	
a CsH	2NH3 = trans-pent-2-enylammonium.					
63	C6H3CrI04	CrI(Cie)(CO)4	0	Стст	4	
80	C ₅ H ₅ I ₅ O ₄ Ph ₂ ⁻² 2C ₉ H ₁₄ N ⁺	(NMe3Ph)2[Rh2I6(COHe)2(CO)2]	м	P21/c	2	
289	C ₆ H ₁₃ B ₇ Co ⁻ .Cs ⁺	Cs[Co(C5H5)(CB7H8)]	м	C2/c	8	
67	C ₅ H ₁₈ Cr ³⁻ -3L1 ⁺ -3C4H ₈ O ₂	L1 ₃ CrMe ₆ .3C ₄ H ₈ O ₂	Trig	RĴc	6	
51	C ₆ H ₂₀ N ₆ ORu ²⁺ .2F ₆ P ⁻ .C ₂ D ₆ OS	[Ru (CO) (C ₅ H ₈ N ₂) (NH ₃) ₄] (PF ₆) ₂ . (CD ₃) ₂ S0 ^α	м	C2/≖	4	
1	C505V.C35H30NP2+	N(PPh3)2[V(CO)6]	Trig	RJ	1	

Crystal Space

^a C₅H_eN₂ = C-bondei 4,5-dimethylimidazolium

	34	C7H5ClirNO2	IrCl(CO) ₂ (py)	м	P21/a 4
ŝ	222a	C7H5MnO4S	$Mn(CO)_2(SO_2)(C_{SH_5})$	M	P21/c 4

110

Į,

								111		
a	b.	Vnit ce c	ll constants	B	Ŷ	Data	R	Rw	Notes	Reference
24.604(3)		8.231(1)				1439	8.9			15
9,78(1)	15.10(1)	7.74(1)		97.18(6)		1336	8.7			16
11.549(2)	5.506(1)	19.260(3)				928	3.3	4.1		17
11.729(14)	10.299(4)	7.868(5)	· ·			463	7.0			18
10.891(5)	11.656(6)	23.803(9)		90.34(1)		2283	11			19
26.238(3)	6.623(5)	12.969(2)		106.20(3)		1647	9.8			20
8.869(3)						135	8.3	4.4		21
11.215(3)	8.729(2)	10.259(3)		90.0(1)		1560	4.0	4.7		22
14.632(21)	10.364(10)	10.765(9)	89.65(9)	106.98(13)	63.72(7)	2112	5.3			23
10,749(4)	12.909(6)	26.801(9)		97.98(5)		2313		4.55		24
6.764(4)	34.98(4)	12.59(2)		97.7(1)		1476	8.2			25
7.911(9)	11.795(10)	10.747(10)				425	5			26
9.663(8)	15.050(12)	12.399(10)		92.42(10)		2867	10.0			27
12.643(2)	11.815(2)	16.376(2)		90.34(1)		1521	4.0	4-6		28
17.69(7)		13.20(5)				278	12.3			29
22.725(5)	8.500(2)	12.307(3)		94.22(3)		2426	3.2	3.8		30
9.761(6)			91.93			595	7.5			31
17.58(6)	7.16(2)	11.65(4)		142.9(1)		838	2.5	2.9		32
10.98(2)	10.63(2)	7.43(2)		100.75(8)		1512	9.3			33
References p.	156									
	-									
-1 -		5.								

112		
139	С7Н6МпNО4	Mn(CO)4(CH2:NC2H4) M P21/n 4
-8	C7H12MoN403P4	Mo(CO) 3 (3PMe)4 0 P2 2121 4
293	С7H16B7Co	Co(C5H5)(C2B7H11) M P21/n 4
300	C7817810Co	Co(C ₅ H ₅)(C ₂ B ₁₀ H ₁₂) ^b 0 Pca2 ₁ 4
300a	C7H17B10Co	Co (C ₅ H ₅) (C ₂ B ₁₀ H ₁₂) ^e 0 4
300ь	C7H17B10Co	Co(C ₅ H ₅)(C ₂ B ₁₀ H ₁₂) ^d 0 4
286	ĊŢij ₂₀ BgMO4	Mn (CO) 3 (B9H12C4H80) Tri PI 2
283	C7H26B5Br2IrOP2	IrBr ₂ (CO)(FMe ₃) ₂ (B ₅ H ₈) M P2 ₁ /c 4

医半角的 医上颌 医周期性结晶 医结核菌素 化间接 医结核 网络阿拉斯斯拉拉阿拉斯斯拉马斯拉 医白喉根的 计分子 医医子宫炎 医鼻子

b 'Red II' isomer. ^a Disordered; not fully refined. ^C 'Orange III' isomer; cell data only; d 'Red-orange IV' isomer; cell data only; probably probably twinned M, space group Cc. twinned M, space group Cc.

$c_8 H_2 O_8 W_2^{2-} 2 C_8 H_2 O_8^+$		(NEC4)2[W2H2(CO)8]	H C2/m 2
18	C ₃ E ₄ FeN ₂ O ₄	$Fe(CO)_4(C_4H_4N_2)^{\alpha}$	M P2 ₁ /c 4

42	C8H3NO5S2₩	$w(CO)_5 (C_3H_5NS_2)^b$	м	P21/a	4
62	C ₈ H ₁₂ BrCrO ₃ P	CrBr(CMe)(CO) ₃ (PMe ₃)	м	P2 1	4
152a	CaH12BrNNiO2	N1Br(MeCN)[CH(CO2Me)CMeCH2]	Tri	cī	4
96	CeH20Cu2P2	Cu2[(CH2)2PMe2]2	м	C2/c	4
68	C8H24M02 ⁴⁻ .4C4H8L10 ⁺	[L1(OC4H8)]4[Mo2Me8]	м	P21/n	2
290	C ₈ H ₂₆ B ₆ ₽₂₽∊	(Me ₃ P) ₂ PEC ₂ B ₆ H ₈	м	A2	2
329	C6CoFe06 . C36H30N+	N(PPh ₃) ₂ [FeCo(CO) ₈]	Tri	PĪ	. 2
312	C ₈ Fe ₂ O ₈ ²⁻ .2C ₃₆ H ₃₀ N ⁺ .2C ₂ H ₃ N	[N(PPh ₃) ₂] ₂ [Fe ₂ (CO) ₈].2LeCN	Tri	PĨ	1
α C484	$N_2 = pyridazine.$ $b C_3H_5NS_2 = S_3$	CH ₂) ₂ NHC ^a S.			an a s San ta
· · ·					

304	C9HNO10W2		W2H(CO)9(NO)	α	Tri PĪ 2
				ß	M C2/c 4
223	CgH5F6FeO2P		$Fe(CO)_{2}[P(CF_{3})_{2}](C_{5}H_{5})$		H P21/c 4

								113	
10 903/11	13 019/91	6 767(1)		07 00/71		1216	7 9		
10.003(1)	13.012(2)	0.34/(1)		93.99(1)		1314	1.0		
16.22(1)	14.90(1)	8.194(7)			° 1	1498	a		
6.811(2)	15.678(2)	10, 949 (5)		104.91(3)		1323	3.2	~160°	
13.744(4)	7-047(2)	13.620(3)				2344	3.02	3.81	
7.259(3)	16.194(6)	11.052(2)		. 1					
7 749(3)	16 258(7)	11 199(5)							
11247(3)	201250(1)								
9.828(3)	13.305(5)	6.937(2)	90.81(2)	104.23(2)	109.7(3)	1803	4.5	5.5	
13.824(4)	10.661(3)	13.611(3)		104.90(2)		2546	4.64	4.25	
	· -								
15.863(4)	12.129(3)	8.145(2)		105.28(2)		1051	3.34	3.18	
7.760(2)	10.593(3)	12.801(3)		105.69(2)		1437	3.4	4.5	
16.91(2)	10.73(1)	7.07(1)		98.93(2)		1862	6.0		
							_		
6.8, (8)	13.667(10)	14.261(10)		.96.55(7)		1128	7		
14.23(1)	11.02(1)	7.41(1)	88.3(1)	104.6(1)	89.8(1)	1239	9.9		
10.17(8)	9.72(7)	13.19(9)		94.0(5)		775	11		
11.473(3)	12,766(3)	12.373(3)		116.32(1)		1160	4.3	5.3	
5.716(2)	9, 785 (4)	15.329(8)		94.24(3)		767	12		
10.58(2)	15.35(3)	12.66(3)	96.3(1)	97.4(1)	92.3(1)	2193	9.8		
17.942(4)	12.944(3)	10.532(3)	93.21(2)	115.35(1)	106.72(2)	3765	8.8		
				-					
12.228(4)	9.634(4) 9.621(5)	6.925(3) 6.921(4)	112.83(3) 112.84(2)	91.28(3) 91.31(5)	97.38(3) 97.34(4)	1932 2518	6.1	n.d.	.)
14.582(8)	6.771(4)	15.627(9)		102.336(6)		919	6.6	n.d.	.j
8.602(7)	11.924(9)	12-959(9)	•	112.75(9)		1882	4.8		
References p.	156								
a training									

114				
_224	CjH5F6FeO ₃ P	Fe(CO)2[F(O)(CF3)2](C5H5)	- M P21/c	4
17 41	C9H5FeNO4 CaH7NOcSW	Fe(CO)4(py) W(CO)=(C,H=NOS) ^d	Н 921/п Н 92./а	4
271	C9H8PeN205	$Fe(CO)_{3}(C_{6}H_{8}N_{2}O_{2})^{b}$	M P21/b	4
19	CjH ₁₈ FeO ₉ P ₂	trans-Fe(CO) ₃ [P(OMe) ₃] ₂	₩ C2/c	4
74	C9H19CoN4O5	CoMe(H2O)(dmg)2	0 Poma	4
297	с ₉ µ ₂₅ в ₁₆ Со ₂ ⁻ . С ₈ µ ₂₀ м ⁺	NEt4[Co2(C5H5)(C2B8H10)2]	M P21/c	4
311	CgFe ₂ Og	Fe2(CO)9	Hex P63/m	1
а С ₄ н7 В С ₆ н6	NOS = thiomorpholin-3-one. N ₂ O ₂ = 1,2-Me ₂ -1,2-dihydropyridaz	ine-3,6-dione.		
6	CroHoffeNallyo 20. Hall	(rr(ra)-l-N-R- 2thf	T~1 Dī	

277	C10H6A82F604	[Ag(CF ₃ CO ₂)] ₂ C ₆ H ₆	M	A2/m 8	
278	C10H8Ag4 ++ 4C104 4H20	С ₁₀ Н ₈ (АдС104) 4.4H20	Tri	PÎ 2	
253	C ₁₀ II ₈ FeI ₂	Fe(C5H5)(C5H3I2)	T1:1	P1 4	

200	C10H10Br2Re ⁺ .BF4	[ReB=2(C5H5)2]BF4	0	Pama	. 2
198	C10H10C12Mo	MoCl ₂ (C5H5)2	н	Р2 ₁ /Ь	ß
199	C ₁₀ H ₁₀ Cl ₂ Mo ⁺ . BF4 ⁻	[HoCl2(U5H5)2]BF4	0	Prama	2
196	С ₁₀ н ₁₀ С1 ₂ №	NbCl2(C5H5)2	м	P21/b	8
191	C ₁₀ H ₁₀ Cl ₂ Zr	ZrCl ₂ (C5H5)2	Tri	PĪ	4
188	C ₁₀ H ₁₀ Co ⁺ . C ₁₆ H ₁₅ CoI ₃ P ⁻	[Co(C ₅ H ₅) ₂][CoI ₃ (PPh ₃)]	Cub	Pa3	8
309	C10H10Cr2N404	[Cr(NO)2(C5H5)]2	Tri	P1	
324	C10H10Fe2N2O2	[Fe(NO)(C5H5)]2	м	P21/c	2
201	$C_{10}H_{10}IRu^{+}$. I_{3}^{-}	[RuI(C5H5)2]13	0	Poma	4
203	C10H10S5T1(V)	T1S5(C5H5)2 ^a	M	P21/n	4
123	C10H16Cl4Pt2	$[PtCl_2(C_5H_\theta)]_2$	0	Ibam	4
		가는 가는 것 같은 것이 같은 것이 있는 것이다. 2013년 1월 2013년 1월 2013년 - 11월 2013년 1월 2013년 1월 2	-		
1012	· 문제 18 · 모르는 문화가 가장 가격이 있는 것		al faith an air		, 독극 관

								TTO	
						-			
1.938(8)	7.603(6)	13-818(9)		100.97(8)		1777	4.5		4
0.100463	10 100/5)	10 000 (0)						7 0	
6.97(3)	6.43(2)	11.84(3)		98-74(6) 110-7(4)		1410	5.4 7.0	7.0	4
4.412(8)	13,103(7)	6-334(5)			117,69(8)	1430	9.8		5
1.964(4)	11.208(4)	13.406(5)		108.80(4)		1193	4.4	4.4	5
			e e e						
3.182(12)	9.115(6)	12.132(7)				1070	3.9		5
3 070(7)	12.442(5)	18 183(13)		99 34741		2895	54	7.5	5
				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		2000			-
6.436(1)		16.123(2)				604	4.0	5.0	5
			-						
9.03	10.27	6.37	97.3	97.9	95.9	1310	6.8		5
5.253(5)	9.674(1)	15.882(6)	•	95.667(4)		2824	8.7	· · ·	5
1 870(1)	9.247(1)	11,123(1)	88.93(1)	96.88(1)	101.21(1)	1796	6.1	7.0	5
				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1011-1(1)	1.50			2
0.779(15)	10.708(15)	10.050(15)	89.25(25)	93.57(25)	96.95(25)	1800	16		5
			÷						
·· ·									
9.50(E)	9.38(1)	7.03(1)				690	5.4		60
3.29(2)	12.09(2)	12.99(2)			106.9(1)	2101	6.8		60
	0.27(1)	6 70(1)				620	2 6		60
	7.34(1)	. 0.75(1)					2.0		00
1.74(2)	12.21(2)	13.16(2)			107.7(1)	2832	6.8		60
.06(1)	8.09(1)	13.15(1)	113.7(1)	117.9(1)	99.5(1)	3478	9.5		60
						1097	6.0		٤,
5.272(6)						1001	0.0		01
.174(1)	6.069(1)	7.927(1)	106.73(1)	102.52(1)	85.18(1)	708	2.7		62
. 8257(9)	5.9998(9)	11.9875(13)		105.548(9)		. 547	6.3		63
.032(7)	14.080(10)	14.180(/)				T033	8.9		64
.019	13.089	11.294		93.62		•			65
.537(4)	18.703(7)	8.290(5)				819	8.1		66
leferences p.	156	-							
	•								
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								

0.0					
80	CIIHIBNCOLC	FCWE(CO)[HB(DZ)3]	n	221/6	4
147	C11813Fe04 ⁺ .F6P ⁻	{Fe(CO) ₃ [CEMe(CH) ₂ CEMeC(O)Me]}PF ₆	м	P21/c	4
280	{C ₁₁ H ₁₅ Ag ₂ As ²⁺ .2NO ₃] _n	$[C_6H_4(CH_2CH:CH_2)(AsMe_2)(AgNO_3)_2]_n$	0	P212151	4
143	C11H15F3M006	$Mo(0_2CCF_3)(C0)_2(C_3H_5)(dme)$	0	Pnam	4
144	C ₁₁ H ₁₅ F ₃ O ₆ W	$W(O_2CCF_3)(CO)_2(C_3H_5)(dme)$	0	Pnam	4
206	C11H16HONO ⁺ , F6P ⁻	[мо (он) (NH2Me) (С5H5)2]PF5	M	P21/a	4
218	C11H16HoN20S2	мо (NO) (C3H5) (S2CNMe2) (C5H5)	M	P21/c	4
125	C ₁₁ H ₁₇ Cl ₂ NPt	trans-[PtCl2(C2H4)(S)-NHMeCHMePh]			
23a	C11H17CoN80	co (c0) (C ₁₀ H ₁₇ N ₈) ^α	D	Стса	8
28	C11F24N1203P4S2	N12(CO)3[(CF3)2FSP(CF3)2]2	0	Pbcn	4
² Combi	nation X-ray powder data and te	matic phase ¹ H n.m.r., isostructural with Ru	i complex.	• • • • • • • • • • • • • • • • • • •	•
C10H	17N8 = 6,7,13,14-tetramethyl-1,2	,4,5,8,9,11,12-octanzacyclotetradeca-2,5,7,1	2,14-pent	aenato.	

Fe2(CO)6[C6H4(NH)5-0]

Fe(CO), (C8H6SO2)ª

a Doped with 0.22 VS₅(C₅H₅)₂.

C1185104W

C11H6090s3

C11H11Nbos

C11H12As2F6I2O3W

116

64

350

214

31

1

316

116

C12H5Fe2NO6

C12H6FeO65

-		#(CO/4(IIIE/6			
292	C10H30B5P2Pt	[(Me3P)2Pt]Me2C	2 ⁸ 6 ⁸⁶ a	H	<u>A2/a</u> 4
			ß	M	P2 ₁ /c 4
. 71	C10C15MnO5	$Mn(C_5CL_5)(CO)_5$		H	P21/n 4
176	C10F10Fe03	Fe(CO) ₃ (C ₇ F ₁₀)	and the second	0	Puma 4

WI (CPh) (CO) 4

0s3H3(CHe)(CO)9

Nb (SH) (CO) (C5H5)2

WI2(CO);[Me2AsC(CF3):C(CF3)AsHe2]

0

0

0

м

Pbca

Pnma

P212121

P21/c

P21/c

P21/c

4

Н

н

8

4

4

CIGHISN2RH BP4 117 (Rh(C2H4)3(HeCN)2]BP4 Her P6 Jime 2 . H. n. p.

							117		
7.30(1)		16.25(2)			668	7			67
9.29(2)	16.88(2)	12.92(2)	96.0(1	.)	1091	9.3			68
12.002(5)	10.415(7)	16.559(7)	102.47((3)	1162	7		٦	
11.892(4)	9.280(4)	18.724(8)	106.17	3)	2613	5		}	46
13.701(2)	8.758(1)	13.329(1)	107.78(1)	1560	4.1			69
11.305(10)	12.110(10)	9.075(10)			1066	3.7			70
20.10(2)	12.12(1)	11.26(1)			683	7.8			26
17.55(3)	14.57(2)	6.76(1)						٠ï	71
6.544(5)	12.815(5)	12.031(5)			823	9			72 [.]
15.37(2)	9.529(1)	15.967(3)	112.03(2)	1823	6.9			73
14.416(1)	7.951(1)	12.990(1).	104.35(1)	2 124	3.9	3.3		74
									~*
9,363(6)	12.174(9)	16.547(10)	121-60	(5)	1239	a.u			13
7.17	10.16	22.02			774	7.8			/6
16.10(2)	9.87(2)	9.68(2)			855	11.5			77
15.84(3)	9.76(3)	9.67(4)			1016	14.0			77
9,98(1)	13.07(1)	10.88(1)		100.4(1) 2138	4.9			60
15.247(4)	12.419(3)	7.729(3)	98.71	.(2)	772	5.6			78
								Ŀ	79
14.313(14)	14.009(9)	13.720(8)			1782	5.0	4.2		80
10.49(1)	14.26(1)	18.77(1)			948	8.7			81
• •									
	•								
0 09272)	14 442751	11 507/5)		2(5)	1658	25	/ F		07
9,81(2)	10.81(2)	13,18(2)	94.39 111.92	(33)	827	6.1	4.5		82
References p	156								
ter en									
			•						
		· .							

179	С ₁₂ Н ₈ FeO,	۶e(CO) ₃ (C ₃ H ₈ O) ^D	Tri	РĪ	2
			0	Pna2 ₁	-4
115	C ₁₂ H ₁₀ FeC ₈	$Fe(CO)_{4}(C_{B}H_{10}O_{4})^{\sigma}$	0	Рст	4
202	C ₁₂ H ₁₀ N ₂ O ₂ T1	T1(NCO)2(C5H5)2	0	Pbca	8
261	C ₁₂ H ₁₂ Cr ⁺ .I ⁻	[Cr(C ₆ H ₅) ₂]I	Ter	14m2	2
			0	Longo?	
237	С ₁₂ Н ₁₅ С1Мо	MoClEt (C5H5)2	H	Р2 ₁ /Ъ -	4
219	С ₁₂ Н ₁₆ I2Но2N4O2	$[MoI(NO)(C_5H_5)]_2(\mu-N_2Me_2)$	M	₽2 ₁ /c	4
217	C12H16HON2O2S2	Мо (CO) (NO) (C_3H_5) (S_2CNMe_2) (C_5H_5)	M	P21/c	4
294	C ₁₂ H ₁₈ B ₅ Co ₂	2,6-[Co(C ₅ H ₅)] ₂ -1,10-C ₂ B ₆ H ₈	н	C2/c	8
299	C ₁₂ H ₂₀ B ₈ Co ₂	2,3-[Co(C ₅ H ₅)] ₂ -1,7-C ₂ B ₈ H ₁₀	M	P21/n	4
189	C ₁₂ H ₂₀ B ₉ Co	$C_0(C_5H_5)(C_5H_4B_9C_2H_{11})$	M	P21/c	4
				•	
119	C ₁₂ H ₂₁ ClPRh	RhCl{P(CH ₂ CH ₂ CH:CH ₂) ₃]	M	P21/c	8
156	C ₁₂ H ₂₂ C1 ₄ O ₂ Rh ₂ .CH ₄ O	$[RhCl_2(C_6H_{11}0)]_2$.MeOH ^e	o	Pc21n	-
72	C ₁₂ H ₂₂ FeN ₆ O	$Fete(CO)(C_{10}H_{19}N_{\theta})^{f}$	0	Сте	4
79	C ₁₂ H ₃₄ CoP ₃	CoMe ₂ [(CH ₂) ₂ PMe ₂](PMe ₃) ₂	м	F21/m	2
95	C ₁₂ H ₃₆ N ₁₂ Pt ₄	[Pt(N ₃)Me ₃]4	Trig	P3cl	4.
340	C ₁₂ Co ₂ Ir ₂ O ₁₂	Co ₂ Ir ₂ (CO) ₁₂	M	P21/c	4
336	C ₁₂ Fe ₃ O ₁₂	Fe ₃ (CO) ₁₂	м	P21/n	2
342	C ₁₂ Ni ₆ O ₁₂ ²⁻ .2C ₄ H ₁₂ N ⁺	(Ne4)2[N13(CO)6]2	Trig	PJ	1
343	C ₁₂ O ₁₂ Pc ₆ ²⁻ .2C ₂₄ H ₂₀ P ⁺	(PPh4)2[Pt3(CO)6]2	M	C2/c	4
					2 N N

118

^a $C_{8}H_{6}SO_{2} = benzo[b]$ thiophene-1,1-dioxide. ^b $C_{5}H_{8}O = 2,3,4,8-n^{4}$ -bicyclo[3.2.2]nona-3,6-dien-2,8-y1-9-one. ^c $C_{8}H_{10}O_{4} = n^{2}$ -cis-2,3-dicarbomethoymethylenecyclopropane. ^d Rings disordered at room temperature (RT), become ordered at low temperatures. ^e $C_{6}H_{11}O = 2$ -(hydroxymethyl)pent-4-eny1. ^f $C_{10}H_{19}N_{8} = 6,7,13,14$ tetramethyl-1,2,4,5,8,9,11,12-octaazacyclotetradeca-5,7,12,14-tetraenato. ^g Twinned to give apparent 0 unit cell of some dimensions. ^h Disordered.

				-		119	
7.476(2)	11.912(4)	6.606(2)	94.55(2) 110.17(2) 92.38(3)	1283	2.1	3.1	84
14.800(8)	8.775(4)	8.412(4)		727	6.1		85
7.047(1)	13.690(3)	14.510(2)		882	4.3		86
9.689(3)	13.265(4)	17.500(6)		2338	5.3		87
7.031(3)		11.754(5)		225	5.5	RT	
6.82	7.04	11.64				-10	ر - ن
8.66(1)	13.87(1)	10.94(2)	120.1(2)	1560	5.0		60
14.673(2)	7.732(1)	16.867(2)	_02. 30(2)	3837	6.9		89
11.634(3)	7.155(4)	19.068(4)	104.5(2)	1702	10		78
28.101(5)	8.351(2)	15.154(5)	129.28(2)	. 1372	3.4	4.3 -15) 791
28.47(2)	8.46(1)	15.28(1)	129.43(3)			2	3 /
14.940(4)	9.006(2)	11.503(3)	93.08(2)	1435	б.7	6.0	92
10,0216(9)	10.9913(11)	14.5535(13)	98.57(1)	5197	4.60	3.36	43

14.037(4)	13,986(6)	14.887(5)	117.76(2)	2807	4.0			94
11.88(1)	15.00(2)	10.70(1)		2948	7.6			95
8.237(2)	13.929(4)	13.418(4)		872	4.2	3.4		96
· 9.0217(11)	11.767(2)	9.0769(9)	109.12(1)	1341	6.2	5.6		98
10,032(6)		31.49(7)		1030	9.9		273ĸ .] ",
9,98		31.25				20	3 ± 4K]
9.12(1)	11.62(1)	17.31(2)	90	570	5.1		9	100
8.359(2)	11.309(2)	8.862(2)	97.00(2)	1354	4.6	6.0	h	101
11.003(1)		045(1)		614	3.9	4.0		102
18,882(4)	14.677(3)	2:.860(7)	110.67(2)	1506	5.6	5.9		103

References p. 156

120					
40	C ₁₃ H₄F ₃ O ₇ S₩¯.C ₈ H ₂₀ N ⁺	NEt4[W(CO)5(C8H4F3O2S)] ^a	0	C2221	8
240	C13H5C1F12W	WC1[C2(CF3)2]2(C5H5)	Tri	PĨ	2
2 29	C ₁₃ H ₅ F ₅ FeO ₄ S	Fe(S0 ₂ C ₆ F ₅)(C0) ₂ (C ₅ H ₅)	M	P21/c	4
376	C13HaCl2HgMoN2O3	MoCl(HgCl)(CO)3(b1py)	м	P21/c	4
70	$C_{13}H_{6}MnO_{6}$, $C_{4}H_{12}N^{+}$	NMe4 [MnAcBz (CO) 4 - cis]	M	P21/c	4
327	C13H10O3Rh2	Rh2(CO)3(C5H5)2			
354	C ₁₃ H ₁₁ As4n ₂ O ₆	Mn2(AsMe2)(CO)6(C5H5)	0.	Pbca	8
177	C13H11Fe::06	$Fe(CO)_{3}(C_{10}H_{11}NO_{3})^{C}$	Tri	₽Ī	2
173	C13H12FeO3	$Fe(CO)_{3}(C_{10}H_{12})^{d}$	υ	P212121	4
194	C ₁₃ H ₁₄ Cl ₂ H£	$HfCl_{2}[(C_{5}H_{4})_{2}(CH_{2})_{3}]$	0	Pbca	8
193	C ₁₃ H ₁₄ Cl ₂ Zr	$2rCl_{2}[(C_{5}H_{4})_{2}(CH_{2})_{3}]$	0	Pbca	8
113	C13H14Cr06	$C_{r}(CO)_{4}[C_{7}H_{8}(OMe)_{2}]$	0	P212121	4
164	C ₁₃ H ₁₅ N ₂ RhS ₂	$Rh(C_{gH_{12}})(Memt)^{e}$	М	P2 ₁ /a	4
78	C ₁₃ H ₂₅ CoN4O ₂	Соме ₂ (С ₁₁ Н ₁₉ N40 ₂) ⁵	м	Pc	2
287	Cl 3H35B5MnNO.	6-Mn(CO)3-8-Et3N(CH2)40B9H12	Tri	рī	2
16	C ₁₃ F ₁₂ Mn ₂ N ₂ O ₇	$Mn_2[N:C(CF_3)_2]_2(CO)_7$	м	P21/c	4

" C₈H₄F₃O₂S = CF₃COCHCOC₄H₃S. ^b Identity of Fischer's "[Rh(CO)₂(C₅H₅)]₂"; cell data only; cf. Mills and Nice (ref. 110) ^c C₁₀H₁₁NO₃ = 3-formyl-N-carbethoxyazepine. ^d C₁₀H₁₂ = 3,4,5,6-n⁴-tricyclo[6.2.0.0²,7]deca-3,5-diene ^e Memnt = 1-methylthiomaleonitrile-2-thiolate f C₁₁H₁₉N₄O₂ = 3,3'-(trimethylenedinitrilo)bis(butan-2-one oximato)

325	C1+H6Fe2O6	Fe ₂ (CO) ₆ (C ₈ H ₆) ^{<i>a</i>} sym	Tri	P1	. 4
326	C14H6Fe206	Fe ₂ (CO) ₆ (C ₈ H ₆) ⁴ unsym	м	P21/c	4
279	C ₁₄ H ₁₀ Ag4 ⁴⁺ .4C104 ⁻ .H ₂ O	C14H10(AgC104)4+H20	м	P2 ₁ /n	2
272	C14H10BMnO3	мп(СО) ₃ (С ₅ Н ₅ ВРЬ)	0	Pbca	8
215	C14H10IMoNO2	$Mol(CO)_2(CNPh)(C_5H_5)$	0	Pbca	8
134	C14H13BF6N6Pt	$PtMe[HB(pz)_3][C_2(CF_3)_2]$	0	Pnma	4
263	C1LH1LCr05	Cr (CO) 3[C6H4 (CO2H)Bu ^C -₽]	M	P21/c	4

						· · · .		101		
								121		
8.82	18.62	31.99				2559	4.4			104
7.942(1)	9.302(1)	12.828(2)	93.76(1)	104.76(1)	111.57(1)	2406	7.9			105
10.97(2)	12.12(2)	12.06(2)		117.6(2)		. 754	10.7			. 106
12.685(4)	12.494(4)	11.925(3)		118.70(2)		1407	8.0			107
10.35	15.58	12.09		100.99		1249	6.8 5			108
8.06(3)	9.04(2)	9_45(3)	73.8(2)	80.7(2)	83.3(2)				b	109
11.157(8)	12.665(8)	22.507(14)				730	3.9			111
7.022(3)	10.550(4)	9.500(3)	92.82(3)	94.53(3)	96.13(3)	2363	4.6			112
11.758(3)	16.987(7)	6.032(2)				1359	3.3	2.9		114
H. 177(3)	13.916(4)	22.425(9)				1797	2.9			115
8.277(2)	13.922(4)	22.568(5)				1049	2.64	2.58		116
14.786(2)	10.137(1)	9.440(1)				840	4.7			113
14.78(1)	10.69(1)	9.20(1)		106.09(5)		2127	3.2	4.5		117
7.600(8)	8.301(8)	13.675(6)		113.5(3)		1342	3.4			118
10.018(2)	12.843(3)	9,305(2)	99.661(15)	94.545(4)	96.918(15)	1803	5.6	6.1		119
9,298(5)	26.614(19)	9,543(8)		121.00(5)		1512	5.2			120
								÷		

				+					
н. 7 34	14.926	12.174	99.04	102.06	68.96	3337	6.3	5.5	121
8.076	14.188	12,408		113.57		2093	7.2	5.8	121
24.189(6)	9.325(2)	5.304(1)		90.35(5)		2151	4.9		122
10.47(1)	15.54(2)	16.36(2)				1084	4.8		123
让.035(4)	17.284(5)	14.510(5)				1471	4.0		124 .
18.424(5)	13.385(3)	7.568(2)				1917	3.5	5.0	126
12.230(5)	7.509(3)	18.099(6)		117.91(4)		1717	4.76		127
· · · ·								•	

References p. 156

122					
216	C1+H1+H003	мо (CO) _Z (С7 ^H 9O) (С5H5) ^b	н	Cc	16
32	C ₁₄ H ₁₆ As ₂ IO ₄ W ⁺ .I ₃ ⁻	[WI(CO),(diars)]I3	Ħ	P21/m	2
328	C14H16N2N12	[N1(CNMe)(C5H5)]2	Maria di Santa di San Santa di Santa	P21/c	4
236	C ₁₄ H ₁₉ Nb	NbEr(C2H4)(C5H5)2	Tet	14 ₁ /a	16
44	C14H2006P2Re2S4	[Re(CO) ₃ (S ₂ PEt ₂)] ₂	Tri	PĪ	.1
75	С ₁₄ H ₂₂ CoN ₅ O ₄	СоМе(ру)(dmg) ₂	Tri	PĨ	2
124	C14H24Cl4Pt2	[PtCl2(C7H12)]2	M	F21/c	2
29.	C14H33O2P4Ta	TaH(CO)2[(CH2FMe2)2]2	M	P21/c	2
341	C14C04N12014 ²⁻ .2C4H12N ⁺	(NMe4)2[C04N12(C0)14]	Trig	RĴ	3
335	C14Mn3014 .C24H20As ⁺	AsPh4[Mn3(())14]	Tri	PĪ	2
а С ^{вне}	Fe = benzoferrole $b_{C_7H_3O} = 1$	1,1',2'-ŋ ³ -[(oxo-5'-cyclopent-1'-ene)yl]-l-ethyl		
371	ϹϯϛℍϝϹϭϥϘ϶	Co₄ (CO) ₅ (C6H6)	Trig	RJ	2
330	C ₁₅ H7CoFe0 ₆	FeCo(CO) ₆ (C ₉ H ₇)	м	P2 ₁ /c	4
225	C ₁₅ H ₁₀ FeO ₂	$Fe(C_2Ph)(CO)_2(C_5H_5)$	м	P21/n	4
377	C15H12Cl2MoO2Sn	Mo (SnCl2Ph) (CO)2 (C7H7)	м	P21/0	4

371	C ₁₅ H ₆ Co ₄ Og	Co4 (CO) 9 (C6H6)	Trig	RJ	2
330	C ₁₅ H7CoFeO ₆	FeCo(CO) ₆ (C ₉ H ₇)	м	221/c	4
225	C15H10FeO2	$Fe(C_2Ph)(CO)_2(C_5H_5)$	М	P21/n	4
377	C ₁₅ ii ₁₂ Cl ₂ MoO ₂ Sn	Mo (SnCl ₂ Ph) (CO) ₂ (C ₇ H ₇)	м	P21/n	4
332	C15H15CoFe04	FeCo (CO) 4 (C4H4He2) (C5H5)	M	C2/c	.8
362	C ₁₅ H ₁₅ Hn ₃ N ₄ O ₄	Mn ₃ (NO)4(C5H5)3	н	P21/c	4
190	C ₁₅ H ₁₅ Ni2 ⁺ . BF4 ⁻	[N12(-5H5)3]BF4		P212121	4
185	C ₁₅ H ₁₅ Tí	T1(C5H5)3	0	Pbca	8
260	C ₁₅ H ₁₆ FeO ₆	$Fe(CO)_{2}[C_{7}H_{8}C_{2}H_{2}(CO_{2}Me)_{2}]$	M	P21/c .	4
359	C ₁₅ H ₁₆ Fe ₂ GeO ₃	Fe ₂ (GeMe ₂)(CO) ₃ (C ₅ H ₅) ₂	0	P212121	4
333	C ₁₅ H ₂₀ CoN104P	CoN1(CO)4(PEt 3) (C5H5)	M	P2 ₁ /c	4
281	C15H21AgFe06+.N03H20	Fe(acac) 3AgNO3. H2O	M	P21/c	4
220	C15H23C1M0N2O6P2	$MoC1[C:C(CN)_2][P(OMe)_3]_(C_5H_5)$	M	P21/n	4
13	C ₁₅ H ₂₇ As ₉ Cr ₂ O ₅	Cr2 (CO) 6 (AsMe) 9	м .	P21/c	4

							•	123	
16.070(6)	41.48(2)	10.854(4)		134.07(3)		∿2300	11		128
14.43(1)	10.86(1)	8.01(1)		93.51(8)	• • •	1544	7		129
6.999(2)	22.07(1)	9.130(3)		93.433(5)		2416	3.7	3.7	130
16.481(2)		18.186(2)		-		1247	4.4	4.9	121
13.14(5)	12.34(2)	7.20(1)	131.76(9)	132.13(42)	47.15(9)	922	6.2		132
14.38(1)	10.02(1)	9.41(1)	56.3(1)	127.3(1)	106.6(1)	3094	6.4		133
6.035(2)	8.030(3)	19.355(8)	·	91.03(3)		1982	9.3		66
8.963(5)	12.467(4)	12.552(5)		125.53(6)		935	13		134
11.283(6)		21.106(12)				725	3.3		135
11.614(11)	9.646(12)	18.022(22)	100.89(5)	96.66(6)	90.96(5)	1414	9.2		136

138

139

140

141

142

144

145

146

147

148

149

150

151

955 6.3

491 3.3 3.0 9.798(3) 82.95(1) 12.076(14) 9.905(10) 12.683(12) 97.5(1) 1899 9.8 9.473(2) 9.796(2) 13.887(3) 109.70(2) 1696 6.0 6.937 14.883 19.086 90.585 2926 5.0 17,700(16) 7.404(14) 23.861(40) 95.5(1) 3066 7.2 6.0 13.341(4) 7.951(2) 16.837(7) 107.73(3) 1338 3.2 1.2 а 17.019(2) 11.454(2) 8.074(1) 1216 6.3 13.468(6) 10.229(5) 17.180(7) 1461 5.2 5.5 11.781 12.891 15.407 139.7 ъ 13.503(1) 14.162(2) 8.229(1) 2141 3.5 4.8 8.945(8) 10.462(14) 20.005(25) 107.5(1) 2853 5.2 12.274(5) 11.761(5) 17.235(5) 120.64(12) 1672 6.6 9.127(2) 18.515(2) 12.923(2) 91.56(1) 3037 4.3 6.1

17.92 10.40 17.00 References p. 156

1.11

90.3
53	C ₁₅ H ₃₇ Cl ₃ NP ₂ Rh	RbCl ₃ (CHNMe ₂) (PEr ₃) ₂	0	P212121	4
a _{Nev}	determination; see also ref. 143.	b Disordered, partial refinement.			
		에 가지는 것은 이번 것이 가지도 가족한 것을 수 같은 것 같은 것은 것 같은 것은 것이 가족한 것을 수 있다.			
367	C ₁₆ H ₆ O ₈ Ru ₃	Ru ₃ (CO) ₈ (C ₈ H ₆) ^a	'ni	PĨ	- 2
306	C ₁₅ H ₁₀ Cr ₂ O ₆	[Cr(CO) ₃ (C ₅ H ₅)] ₂	м	P21/c	2
307	С16H10H0206	[Mo(CO) ₃ (C5H ₅)] ₂	м	P21/c	2
382	С ₁₆ Н ₁₀ Но ₂ О ₆ Zn	$2n[Mo(CO)_{3}(C_{5}H_{5})]_{2}$	м	P21/n	2
308	C16H1006W2	[W(CO) ₃ (C ₅ H ₅)] ₂	M	P21/c	2
355	C15H12As2F4Mn2O8	[Mn(CO)4]2(AsMe2)(C4F4AsMe2)	M	P21/n	4
7	C16H12Mon404	Mo (CO) 4 (Mepaphy) ^b	M	F2 1/c	4
384	С ₁₅ H ₁₄ CdHn ₂ O ₁₃	Cd(diglyme)[Mn(CO) ₅] ₂	M	P21/n	4
172	ClGH14FeO7	$Fe(CO)_{3}[C_{7}H_{8}C_{2}(CO_{2}Me)_{2}]$	м	P21/c	4
162	С16Н14Но04	Mo(CO)4(C12H14) ^C	м .	P21/n	4
273	C ₁₆ H ₁₆ B ₂ Fe ₂ O ₄	[Fe(CO)2(C5H5BMe)]2	Q	Слеп	4
169	C ₁₆ H ₁₆ FeN ₂ O ₅	$Fe(CO)_3(MeC_4H_4CHMeNEC_6H_4NO_{2}-m)$	Tri	PĪ	2
321	C ₁₆ H ₁₅ Fe ₂ N ₂ O ₂	$Fe_2(CO)_2(\mu-CNMe)_2(C_5H_5)_2$	Tri	РÏ	2
363	C ₁₆ H ₁₆ Fe ₃ O ₈ S ₂	$Fe_3(CO)_8(C_4H_8S)_2^d$	М	C2/c	4
270	C ₁₆ H ₁₆ Pa	Pa(CgH ₈) ₂			
170	C ₁₆ H ₁₇ FeNO ₃	Fe(CO)3(MeC,H,CHMeNHPh)	M. ·	P2 1/c	. 4
353	С ₁₆ Н ₁ 7Хо204Р	Mo2H(CO)4(PMe2)(C5H5)2	Tri	cī	4
356	C ₁₆ H ₁₈ As ₃ F ₅ Mn ₂ O ₅	$M_{02}(CO)_{6}(AsMe_{2}) [C_{4}F_{5}(AsMe_{2})_{2}]$	Tri	Pl	2
389	CIGHIBGE20I0RE2	[Re(CO)4C(O)Me(GeMe2)]2	м	12/m	. 2
			Tri	PĪ	
140	C ₁₆ H ₁₈ N ₂ N10 ₂ .C ₇ H ₈	N1(MeN:CHC6H40H)2.C7H8	. M	₽2 ₁ /n	4
269	C ₁₆ E ₂₀ Fe	¥e(C ₆ H ₁₀) ₂	M	P21/-	4
157	C16H22CL2Pd2	[PdC1(C8H11)]2	Hex	RJ	9

124

.

152

								125		
1.84(1)	12.26(1)	15.72(2)		··· .			5.0	5.6		152
9.824(2)	8.866(2)	12.665(3)	83,82(2)	93.97(2)	125.90(2)		7.7			153
10.468(1)	7.625(1)	12.227(2)		127.22(1)		1269	2.7	3.3		154
10.387(1)	8.031(1)	12.039(2)		125.58		1471	2.1	2.9		155
11.101(4)	7.548(2)	11.726(4)		64.43(2)		2101	4.0	5.8		156
10.374(1)	7.971(1)	12.047(2)		125.83(1)		1548	2.3	3.9		155
9.040(3)	13.552(4)	18.517(5)		90.52(2)		1728	3.6			157
8.326(8)	11.916(12)	18.056(18)		93.15(10)		1336	8.8			158
10.161(10)	23.010(20)	9.718(9)		91.80(2)		2191	4.31			159
12.360	9.295	14.195		102.2		2583	5.6	5.0		146
17.962(5)	11.944(3)	7.125(2)	•	93.65(2)		1477	7.7			125
9.80(1)	8.47(1)	19.96(2)				556	5.3			123
11.743(2)	9.755(2)	7.914(1)	94.66(1)	89.55(1)	109.46(1)	2206	2.6			161
8.660(2)	12.682(4)	7.993(2)	101.72(2)	116.28(1)	83.28(2)	1370	3.9	4.7		160
15.251(3)	8.402(2)	17.445(4)		104.91(2)		1024	4.5	6.5		162
7.09(4)	8.75(4)	10.62(4)		98.5(4)					е	163
11.789(2)	14.528(3)	9.259(2)		96.61(1)		1998	2.4			161
9.192(11)	16.631(20)	11.592(14)	93.06(6)	97.56(7)	90.68(9)	2318	7.6	7.7	f	164
9.580(4)	15.279(6)	9,292(3)	93.07(2)	119.26(2)	82, 80(2)	2234	8.0			165
9.639(8)	11.504(9)	11.140(9)		97.22(1)		692	3.9		g	165
9.05	9.05	9.63	106.9	118.0	101.0					
13.776(2)	12.159(2)	12,724(2)		91.97(2)		1340	6.0			167
8.61(1)	21.31(2)	11, 39(1)		143.0(08)		1064	5.9			169
27.155(7)		6.669(6)				731	5.1			169

References p. 156

126	이 생산 사람은 특별한 가장 가지가 있었다. 또한 것은 것은 것이다. 같은 것은 것은 것은 것은 것은 것은 것은 것은 것은 것이다. 것은	· 그는 것이 가지 않는 것이 있는 것이 가지 않는 것이 있는 것이 있는 것이 있는 것이 있다. 이 가지 않는 것이 있는 가지 않는 것이 있는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 있는 것이 없는 것이 있는 것이 없는 것이 있는 것이 없는 것이 있는 것이 없는 것이 것이 없는 것이 있 것이 없는 것이 없 않이 않은 것이 없 것이 없는 것이 않이	÷.
11	С ₁₆ Н ₂₄ Аз ₄ Ст ₂ 0 ₈	[Cr (CO)4]2(AzHe2)4 H I2/m 2	2
126	C16H27Cl2NOPt	PtCl ₂ [(R)-NH ₂ CHMePh]- 0 P2 ₁ 2 ₁ 2 ₁ 4 [(S)-Bu ^t CHMeO-(R)-CH:CH ₂]	
43	C ₁₆ H ₃₀ N ₃ OReS ₆	Re(CO)(S ₂ CNEt ₂) ₃ Tri Pl 2	
86	C ₁₆ H ₄₀ N [±] 2 ^P ₄	N12[(CH2)2FMe2]4 M C2/m 2	2
291	C ₁₆ H ₄₂ B ₅ P ₂ Pt	6-Pt(PEt ₃) ₂ -5,8-Me ₂ C ₂ B ₆ H ₆ 0 Pbca 16	÷_,
296	C ₁₆ H ₄₃ B ₇ P ₂ Pt	10-Pr(PEt ₃) ₂ -2,8-Me ₂ C ₂ B ₇ H ₇ M P2 ₁ /a	
295	C ₁₅ H ₄₅ B ₇ NiP ₂	[N1(PEt ₃) ₂]Me ₂ C ₂ B ₇ H ₉ M P2 ₁ /n	4

^a $C_{8}H_{6}$ = pentalene. ^b Mepaphy = (E)-5-methylpyridine-2-carboxaldehyde-2'-pyridylhydrazone. ^c $C_{12}H_{14} = n^{4}-1.2:5,6$ -bicyclo[4.3.3]dodeca-1,3,5,7-tetraene. ^d $C_{4}H_{8}S$ = tetrahydrothiophene. ^e Crystal data only, from powder pattern; data for U, Th compounds also listed. ^f Neutron diffr.; cf. X-ray study, ref.406.^g Apparent space group and unit cell is composite of two orientations of triclinic cell; refinement in 12/m.

313	C17H8Fe2N207	Fe2(Co)7(bipy)	Tri	рī	2
50	C17 ^{II10} BrMnN2O3	$MnBr(CO)_{3}(CNPh)_{2}$	M	P21/n	4
372	C ₁₇ H ₁₀ Ca4Og	Co4 (CO) g (C6H4Me2)	м	₽21/c	4
318	C ₁₇ H ₁₀ Fe ₂ N ₂ O ₃	$cis-Fe_2(CO)_3[C:C(CN)_2](C_5H_5)_2$	м	P21/c	2
241	C ₁₇ H ₁₀ Fe ₂ O ₅	$Fe(COC_{6}H_{6}[Fe(CO)_{3}]C_{5}H_{4})(CO)_{2}^{b}$	м	P21/c	4
181	C17810Fe207	Fe ₂ (C0) ₆ (C ₁₁ H ₁₀ 0) ^C	м	P21/c	4
55	C ₁₇ H ₁₆ I ₃ N ₂ ORh	RhI3[CPh(Nie)CPh:Nie](CO)	м	P21/n	4
158	C ₁₇ H ₂₁ F ₆ (),Rh. §H ₂ O	$Rh(H_2O)(acac)[C_8H_{12}C_2(CF_3)_2].3H_2O$	M	C2/c	8
259	C17H22Ma05	$Mn(CO)_{3}(C_{14}H_{11}O_{2})^{d}$	м	P21/c	4
347	C17Fe6016 ²⁻ .2C4H12N ⁺	(Me4)2[Fe5C(CO)16]	0	Pnma	8

^a Ligand is disordered mixture of o-, m-xylenes. ^b COC₆H₆C₅H₄ = 1-(n⁵-cyclopentadienyl)-2,3,4,5-n⁴-cyclohexa-2,4-dien-1-oyl. ^c C₁₁H₁₀O = 2,3,4.11-n⁴-bicyclo[4.3.1]undeca-2,6,8-triene-4,)1-y1-11-one. ^d C₁₄H₁₁O₂ = 1-syn-(1',2'-dihydro-2'-oxo-1'-oxe-azulen-3'-y1)-n⁵-pentadienyl.

239	C19H10F12Mo	÷	$Mo[C_2(CF_3)_2C_5H_5][C_2(CF_3)_2](C_5H_5)$	M	P21/n	
,					an a' a' a'	
107	CIBH14F12O4Pd		$Pd[acacC_2(CF_3)_2]_2$	M	P21/n	• •

						* <u>.</u>		127	
9.920(2)	10.976(2)	13,240(2)		118.14(1)		727	2.9	4.7	170
25,56(3)	11.37(1)	6.84(1)				1764	7.1		171
15:666(1)	9.933(1)	9.507(1)	107.61(1)	93.04(1)	114.63(1)	2660	2.75	•	172
11.8445(6)	10.7782(8)	9.3078(6)		v9.672(6)		2500	3.7	4.4	98
18.868(8)	17.143(7)	31.07(2)				4569	7		46
16.955(10)	18.879(18)	10.066(16)		125.66(8)		2810	10.7		174
9.144(3)	18.954(5)	15.021(4)		90.51(4)		3449	10.4		175

10,447(6)	12.447(6)	7.047(2)	84.49(3)	97.50(4)	101.26(4)				176
18.03(5)	5.93(5)	16.83(5)		107.33		555	11.1		177
10.03(1)	9.86(1)	20.24(2)		96.40(5)		1883	5.6	5.4	 137
7,218(1)	33.275(6)	.13.364(2)		99.71(1)		1441	8.4		178
6,562(1)	21.690(5)	11.399(2)		96.78(2)		2852	5.0	4.2	179
12.007(6)	11.842(7)	12.742(7)		107.47(2)		1632	5.2		85
10.83(1)	17.24(2)	11.52(1)		97.3(2)		2400	4.7		180
8. 84	19.34	22.61		102.8		1388	9.1		181
13,249(5)	7.178(4)	15.662(6)		96.66(3)		1009	6.6		182
10.098(15)	18.788(20)	36.712(36)				1584	11.9		183

12.905(6)	9.461(3)	15.302(6)	106, 34(4)	2249	9.5	105
9.512	23.29	11.30	114.9	4302	5.8	184

References p. 156

. 38	C19H15C12OPPt	cis-PtCl2(CO)(PPh3)	Tri	₽Ĩ	2
22	C19H15FeN2O3P	Fe (CO) (NO) 2 (PPh3)	Tri	PĪ	2
163	C ₁₉ H ₂₂ C1 ₂ N ₂ Eu	$RuCl_2(C_7H_8)(NH_2Ph)_2$	0	Cmc2 1	4
146	С ₁₉ Н ₂₃ ВиоN4O2	$M_0(CO)_2[Et_2B(pz)_2](C_7H_7)$	м	P21/n	4
351	C19H24NN13	N13(C5H5)3(NBu ^C)	м	C2/c	8
93	C ₁₉ H ₃₄ ClOP ₂ Pt ⁺ .F ₆ P ⁻	[Pr(C6H4C1-p)(C0)(PEr3)2]PF6	O	Pnam	4
375	C19H38Cr05S14Sa	$Cr(CO)_5Sn[CH(SiMe_3)_2]_2$	M	P21/c	4
387	C ₂₀ H₂Mn₄O ₂₀ Sn₂	[m(CO)5]4Sn2H2	м	62/c	4
386	C ₂₀ H ₈ CdMn ₂ N ₂ O ₁₀	[Hn (CO) 5]2Cd (bipy]	M	P2 ₁ /n	4
15	C ₂₀ H ₁₀ Mn ₂ N ₄ O ₈	[Mn (CO) 4N:NPh]2	Tri	РĪ	• 1
274	C ₂₀ H ₁₂ Cu ₄ F ₁₂ O ₈	Cu4 (02CCF3) 4 (C6H6)2	м	P21/n	4

^a $C_{13}H_{15} = 2,3-eno-n^5-cyclopentadieno-4,4-dimethylbicyclo[3.2.1]octa-2,6-diene.$ $^b <math>C_{5}H_{5}(He_{2}C_{2}O)_{2} = 1,3',4'-n^3-2-methyl-2-(6',6'-dimethylbicyclo[3.2.0]hept-3'-en-7'-on-2'-yl)propionyl.$

		한 가지는 사람은 이렇는 것은 것은 가지를 받았다. 사람은 사람은 것이 있는 것이 아주에게 한 것이 있는 것이 있			
317	C ₁₈ H ₁₉ Fe ₂ NO ₃	Fe ₂ (CO) ₃ (CNBu ^L)(C ₅ H ₅) ₂	H	P21/c	4
256	C ₁₈ H ₂₀ Fe	$Fe(C_{5}H_{5})(C_{13}H_{15})^{\alpha}$	M	. P21/c	4
361	C ₁₈ H ₂₀ Nb ₃ O ₁₀	$[Nb(HCO_2)(C_5H_5)]_3(OH)_2(O)_2$	M	82/m	4
264	С ₁₈ H ₂₂ Cl ₂ Ho2	[MoC1(C3H5)(C6H6)]2	H	P21/b	2
390	C ₁₈ H ₂₂ Fe ₂ Ce ₂ O ₅	[Fe(CO)₂(C5H5)CeHe₂]20	н	P21/n.	4
248	C18H22N102	$Ni[C_{5H_5}(Me_2C_2O)_2](C_{5H_5})^b$	Tri	Pī	2
207	C18H26HoBhS2 ⁺ F6P	[(C ₅ H ₅) ₂ H ₀ (SMe) ₂ Rh(C ₃ H ₅) ₂]PF ₆	н	Р2 ₁ /Ъ	4
310	C18H28M2N2S2	Mo2 (NBu ^t)2S2 (C5H5)2	н	P21/n	2
151a	C _{lu} H _{3l} NiP	NIMe (CHMeCHCHMe) ($PPr_2^{i}Ph$)	н	P21/c	4
357	C ₁₈ Ga ₂ Mn ₄ O ₁₈	Mn ₂ (CO) ₈ [u-GaMn(CO) ₅] ₂	Tet	14 ₁ /a	8
358	C ₁₈ In ₂ Mn ₄ O ₁₈	$M_{2}(CO)_{8}[\mu-InMn(CO)_{5}]_{2}$	Tet	14 ₁ /a	8
45	C ₁₈ O ₁₆ Re ₄ S ₆	Re4 (CO) 15 (SC52) 2	Tri	РĨ	1
344	C18018Pt9 ^{2~} -2C24H20P ⁺	(PPh4)2{Pt3(CO)6]3	. м	C2/c	.4
			-		

÷.

					•				· .
								129	
15.571(8)	9.518(9)	12.162(7)		101.74(4)		907	3.1	3.5	185
10.733(3)	8.122(1)	16.873(5)		110.95(1)		842	9.1		186
13.150	8.901	17.467			102.7		11.5		187,188
9.29(2)	12.49(2)	7.65(2)			104.3(3)	961	4.9		189
8.056(2)	12.506(2)	22.631(3)		98.01		1780	5,1	6.8	190
9.0048(16)	15.5241(33)	6.0445(12)	94.17(2)	109.94(1)	94.04(2)	2794	3.04	3.05	191
8.23(2)	17.71(3)	15.33(3)			96.5(2)	1917	9.8		192
15.486(2)	8.839(1)	7.787(1)		93.882(5)		1244	2.4		193
8.927(3)	26.031(9)	8.718(2)		110.88(2)		1404	6.26	4.56	194
13.50(2)		28.26(3)				2392	3.2		195,196
13,72(2)		28.54(3)			-	3172	4.0		195,196
7.121(1)	8.540(2)	14.502(3)	89.07(1)	108.75(1)	104.53(1)	1477	8.3		197
20.123(3)	14.311(3)	26.433(5)		115.22(6)		2436	6.3	6.8	103
10.482(1)	9.593(1)	11.007(1)	97.57(1)	117.96(1)	93.80(1)	4150	6.7	7.5	198
10.96(1)	10.20(1)	10.45(1)	115.84(8)	117.38(8)	78.90(8)	1448	5.0	6.5	194
17.162(4)	12.589(3)	8.522(2)				2642	2.5		200
16.242(7)	9.602(5)	12.777(7)		94.45(4)		2023	9.5		201
28,40(3)	9.16(2)	15.28(2)		100.5(2)		1620	13.8		202
12.453(15)	15.282(17)	14.360(16)				1872	14.24		203
9.340(4)	13.548(8)	24.272(10)		90.33(1)		1591	7.1		204
15.71(5)	17.18(5)	12.51(5)		107.4(1)		2968	20		205
14.429(15)	15.805(16)	10.423(10)		94.62(2)		2041	5.27		206
7.2358(13)	8.8893(17)	9.4677(18)	80.52(2)	77.38(1)	71.44(1)	1974	3.43		207
24.581(6) References p.	10.586(1) 156	11.603(2)		113.13(1)		2342	10.6		208
•									

30		가 가장에 생길을 들었는 것 같은 것이다. 같은 것이 같은 것이 가지만 정말 것을 통하게 하는 것이다. 같은 것이 같은 것이 가지만 것을 것을 통하게 하는 것이다.			
10	C ₂₀ H ₁₂ FeO ₄	$Fe(CO)_{4}(C_{15}H_{12})^{\alpha}$	H	P21/n	
23	C20H15CONO3Sb	Со (CO)2 (SbPh3) (NO)	R	P21/n	
55	C₂₀Щı ₈ Fe0	$Fe(MeC_5H_3CHPhCH_2COC_5H_4)^b$	o	Aba2	8
97	C ₂₀ B ₂₀ Cl ₂ Nb ₂ 0 ²⁺ .2BF ₄	{[NbC1(C5H5)2]20}(BF4)2	0	Pnn2	2
92	C20H20C120ZT2	[ZrC1(C5H5)]2]20	H	CZ	4
.84	C20H20U	V(C5H5)4	Tet	142m	2
352	C ₂₀ H ₂₃ Ni ₄	N14H3(C5H5)4	M	C2/c	. 8
.65a	C ₂₀ H ₂₄ N104	N1(C6He402)2 ^C	M	P2/a	. 4
114	С ₂₀ н ₂₈ нол ₆ ось	$MoO(S_2CNPr_2)_2C_2(CN)_4$	0	Pbca	٤
108	C ₂₀ H ₂₉ F ₁₂ N ₃ O ₂ Pd	$Pd[OC(CF_3)_2OC(CF_3)_2](CNBu^{L})$	M	P21/a	L
89	C ₂₀ H ₃₀ ClP ₂ PtS1	trans-PtCl(CH ₂ SiMe ₃)(PMe ₂ Pb) ₂	M	Cc	
20	C ₂₀ H ₃₀ N1	$(+)-Ni(C_{10}H_{15})_2^d$	M	P21	:
35	C ₂₀ H ₃₃ Al ₂ ClZr	$2rC1[CH_2CH(AlEt_2)_2](C_5H_5)_2$	O .	P212121	
39	C ₂₀ H ₃₃ ClP ₂ PtS1	trans-PtCl(CH ₂ SiMe ₃)(PMe ₂ Ph) ₂	M .	Cc	4
47	C ₂₀ H ₃₃ ClO ₃ PPh	cis-RhCl(CO) ₂ [P(O)Cy ₃]	м	P21/c	
298	C ₂₀ i1,7B9P2Pt.	<i>closo</i> -1-Pt (PMe ₂ Ph) ₂ -2,4-Me ₂ C ₂ BgHg	Tri		
291	C _{2J} H ₃₇ ClinP ₂ P ₂	trans-PtI (CMe:NC6H4Cl-p) (PEt3)2	M	P21/c	
348	C20019Rh8	RhgC(CO)19	Tri	PĪ	
с16н	12 - dibenzosemibullvalene ^b m.p.	228° ^C C ₆ Me ₄ O ₂ = durroquinone		. •	
C10H	15 = n ³ -pinenyl (7,7-dimethyl-la,1,2	-n ³ -1-methylenebicyclo[3.1.1]hept-1-enyl)	1		
378	С ₂₁ Н ₁₇ С1моО ₂ Sn	Mo (SaCLPb ₂) (CO) ₂ (C ₇ H ₇)	н	P21/n	
59	C21H19F12IrO2	$Ir[acacC_2(CF_3)_2][C_8H_{12}C_2(CF_3)_2]$	Tri	PĪ	
47	C ₂₁ E ₂₀ Fe ₂ O ₅	Fe2(CO)5(C5H4CMe2C5H4CMe2)	м	P21/c	
45	C21H25BHON402	Mo(CO)2(CH2CFhCH2)[Et2B(pz)2]	o	P212151	
94	C ₂₁ H ₂₅ F ₅ O ₂ RuS1 ₂	$Ru(Sille_3)(CO)_2[C_7H_7(C_6F_5)Sille_3]$	H	Ce	. • .
	C21H25N2O2Rh	$Rh(acac)(C_6H_8)(py)_2^{\alpha}$	Tri	PÎ	-
10a	•				

						• •		131	
9.365(4)	18.355(8)	9.816(4)		106.0(1)		2849	4.4		209
15.697(4)	9.416(3)	13.624(3)		90.04(2)		3532	3.7	4.4	210
14.45(2)	25.08(3)	8.13(1)			e in the	658	6.1		211
11.55(1)	8.12(1)	12.93(1)				1293	3.0		60
13.88(1)	7.82(1)	19.05(2)		98_88(10)		1015	5.7		212
8,635(2)		10.542(3)				700	-2.07		213,2
28. 32(2)	9.23(1)	15.03(1)		102.77(8)		1227	6.4		215
16.653(6)	17.070(6)	6.797(2)			115.8(1)	1200	9.5		216
13.033(5)	18.289(8)	23.805(10)				3093	5.0		217
20.093(3)	9.519(2)	201(3)-	-	96.77(2)		4123	9.9		218
8,919(4)	21.723(8)	13.805(6)		113.88(3)		2573	3.9		219
14.91	7.38	8.04		90.03		1893	11.4		220
14.976(2)	18.607(?)	8.278(1)				1712	10		221
8.919(4)	21.723(8)	13.865(6)		113.88(3)		2573	3.9		219
9, 368(10)	13.410(8)	18.271(24)		100.84(9)		1905	6.5		222
9, 124(3)	10.285(4)	14.208(8)	100.40(4)	94.32(4)	98.95(3)	4330	4.2		174
20, 903 (3)	8.531(1)	15.176(2)		107.760(10)		1791	3.8		223
	17 76(2)	10.26(1)	75, 95(10)	69.05(10)	92 35/10)				776

8.479	18.295	12.795		90.751		3725	3.0		140
3.445	11.389	8.472	69.5	114.1	104.2	4642	4.8		181
6.083(3)	7.935(3)	16.057(6)		109.82(2)		1773	2.7		226
0.085(2)	10.219(2)	20.654(4)				2397	4.4	5.3	227
6.798(2)	17.057(5)	21.157(6)		91.61(2)			7.0		228
3.167(1)	9.108(1)	9.185(1)	107.93(1)	81.12(1)	93.17(1)	3373	3.3		229
5.991(2)	8.601(2)	16.703				1822	4.8	6.0	230

132					
59	C ₂₁ H ₂₉ Cl ₂ N ₂ PPr	trans-PtCl ₂ [C(NPhCB ₂) ₂](PEr3) ₂	Tri	PĪ	2
61	C21H310P2Pt . F6P	trons-{PtMe[CO(CH2)2CH2](PMe2Ph)2}PF6	0	Рсса	8
133	C21H31P2Pt+.F6P	[PtMe(C2Me2)(PMe2Ph)2]PF6	0	Pnma	4
60	C ₂₁ H ₃₄ NP ₂ Pt ⁺ .F ₆ P ⁻	trans-{PtMe[CHe(NHe2)](PHe2Ph)2}PF5	M	P21/c	4
149	C ₂₁ H ₄₇ IrP ₂	Ir(C ₃ H ₅)(PPr ¹ ₃) ₂	Tet	P421c	4
^а с _б н _я	= 2,3-bis(methylene)butane-1,4-d	1y1.			
385	C ₂₂ H ₈ CdMn ₂ N ₂ O ₁₀	[Mn(CO) ₅] ₂ Cd (phen)	Ħ	P21/n	4
174	C ₂₂ H ₁₄ Fe ₂ O ₆	[Fe(CO) ₃] ₂ G ₁₆ H ₁₄ ^{<i>a</i>}	0	Pbca	8
21	C ₂₂ H ₁₅ FeO4Sb	Ye(CO)4(SbPh3)	Tri	РĪ	2
175	C ₂₂ H ₁₈ Fe ₂ O ₆	[Fe(CO) ₃] ₂ C ₁₆ H ₁₈ ^b	Tri	PĪ	1
369	C ₂₂ H ₁₈ O ₆ Ru ₃	Ru₃(CO) _δ (η ⁵ -C ₈ E9) (η ⁷ -C ₈ E9) [⊄]	M	C2/m	2
257	C ₂₂ H ₂₂ Fe	FcCH ₂ CH ₂ Fc	0	Pbca	4
102	C22H22N2OPd	Pd(C ₆ H ₄ CH ₂ NMe ₂)(sal:NPh)	н	P21	2
368	C ₂₂ H ₂₂ OgRu ₃ Si ₂	$\operatorname{Ru}_{3}(\operatorname{CO})_{\theta}[\operatorname{C}_{\theta}\operatorname{H}_{4}(\operatorname{SiMe}_{3})_{2}]^{d}$	Ħ	P2 ₁ /a	4
233 -	C22H46C03018P6	$Co_3(C_5H_5)_2[P(0)(OHe)_2]_6$	н	₽2 ₁ /c	2
^а с ₁₆ н b с ₁₆ н с _л 5-с d с ₈ н,	14 = 3,3'-ethano-1,1'-bis(2,3,4,5 18 = bis(2,3,4,5-n ⁴ -bicyclo[4.2.0 H9 = n ⁵ -tetrahydropentaleny1; n ⁷ (SiHe ₃) ₂ = n-1,5-bis(trimethylsi)	J-η ⁴ -cyclohepta-2,4,6-trienyl). J]octa-2,4-dien-3-yl). /-C ₆ Hg = η ⁷ -cyclooctatrienyl. yl)pentalene.			
244	Caallan FeaOs	$Fe_2(CO) \leq (C \leq H_L CPh_2)^{\alpha}$	м	P21/c	4
245	Co 2H11 OcRup	$Ru_2(CO)_5(C_5H_4CPh_2)^{\alpha}$	Tri	PĨ	4
	-2314-32		M	F21/c	4
331	C2 3H18CoFeO5P	FeCo(CO)5(PMePb2)(C5H5)	Tri	РĨ	2
165	C ₂₃ H ₂₁ C1 ₂ O ₂ Rh	Rh(PhCOCHCOPh)(C _g H ₁₀ Cl ₂) ^b	0	Puna	4
262	C ₂₃ H ₂₄ CrO ₃	Cr (CO) 3 (C ₂₀ H ₂₄) ²	M	C2/c	8 -
398	C ₂₃ H ₃₀ Cl ₃ IrP ₂ Sn	Ir (SaCl ₃) (C ₇ H ₈) (PMe ₂ Ph) ₂	M	₽2 ₁ /c	4
57	C _{2 3} H ₃₇ N10 3P	N1(CO)3(CHMePCy3)	Ħ	P2 ₁ /n	4

				•• 2 - •	• . • • •	1. N. A.	· .
				•	· .	133	•
13.961(6) 11.782(4)	10.659(5)	92.98(3) 125.29(3)	114.54(3)	2382	4.8	6.5	230
15.503(7) 18.81(1)	17.66(1)			1763	4-4	•	231
15.447(5) 15.344(4)	11.005(3)			1060	3.6		232
8.515(2) 10.934(2)	28.549(7)	93.93(1)		1865	4.1		233
11.62(1)	18.39			1090	3.6		97
	÷ .						
			. •				
11 571 (15) 16 250(14)	10 (52(20)						

14.574(15)	16.258(16)	10.453(10)		96.87(2)		1431	5.76		206
13.59(3)	15.11(3)	20.32(4)				771	7.0	6.9	234
10.557(1)	10.043(1)	11.230(1)	114.22(1)	91.95(1)	92.25(1)	3217	2.4		235
8.178(2)	6.800(3)	9.729(3)	101.98(3)	106.99(2)	95.83(3)	1788	3.0	3.9	236
24.934(11)	12.632(6)	14.669(8)		114.31(2)		2211	5.9		237
10.063(8)	10.434(4)	16.226(5)				1202	4.5		238
8.629(5)	10.755(8)	11.116(9)		107.2(1)		1967	4.8		239
13.298(8)	10.793(2)	19.812(6)		97.35(4)			5.7		240
11.747(5)	12.519(6)	13.646(6)		111.63(2)			9		241
								i	

								ź	
7.473(2)	15.156(7)	17.710(13)		94.30(7)		2040	4.0		226
11.557(8)	10.520(3)	8.992(3)	99.26(2)	102.26(21)	98.63(4)	3165	2.8		242
12.55(1)	8.96(1)	18.32(9)		90.6(1)					
6-948(9)	11.551(18)	14.618(19)	100.9(1)	86.9(1)	104.3(1)	1466	8.5	,	243
5.56(1)	20.50	10.65(1)				1482	4.0		244
19.663(3)	14.350(5)	16.443(3)		120.10(1)		1946	4.6	5.3	245
9.616(1)	28.620(6)	9.76.(1)		96.72(1)		4704	3. 93	3.37	246
10.670(1) References n	13.879(2) .156	16.222(2)		91.80(1)		4099	9.4		247

^a $C_5 \mathbb{H}_4 \mathbb{C}^{2} = 6,6$ -diphenylpentafulvene(a,1,2-n³-a-phenylbenzyl-n⁵-cyclopentadienyl). ^b $C_6 \mathbb{H}_{10} \mathbb{C}_2 = 1,6$ -dichloro-1,5-cyclooctadiene. (1',2'-naphtho)bicyclo[3,2,1]octene.

134

204	C ₂₄ H ₁₈ N ₂ O ₈ Ti	T1(0C0C6H4N02-p)2(C5H5)2	Tri	PÎ	2
234	C ₂₄ H ₂₀ IrOP	Ir (CO) (PPh3) (C5H5)	Tri	PĪ	2
168	С ₂₄ H ₂₆ MoO ₂	мо(CO) ₂ (C ₁₁ H ₁₄) ₂ ^a	M	P2 1/c	4
154	C ₂₄ H ₂₈ N ₂ O ₂ Pd ₂	[Pd(CH2CH2)]2salen	н	P21/c	2
381	C ₂₄ H ₃₀ Cl ₂ Mo ₂ O ₈ Zn	$[Mo{2nCl(OEr_2)}(CO)_3(C_5H_5)]_2$	Tri	рī	1
305	C24B30Cr204	[Cr(C0)2(C5He5)]2	н	P21/n	2
208	C ₂₄ H ₃₂ Mo ₂ NiS4 ²⁺ .2BF4	$[N1[(MeS)_{2}Mo(C_{5}H_{5})_{2}]_{2}](BF_{4})_{2}$	м	P2 ₁ /a	2
209	C24H32Nb2N1S42+.2BF4.2H20	{N1[(HeS)2Nb(C5H5)2]2}(BF4)2.2H20	м	P21/b	4
322	C24836Fe204S2	$[Fe(CO)_2(C_5 H_6 Me_4 S)]_2^b$	м	P21/c	4
103	C24E64P8Ru2	{RuH[CH ₂ PMe(CH ₂) ₂ PMe ₂](dmpe)} ₂	Tri	pī	2
345	$C_{24}O_{24}Pt_{12}^{2-}.2C_{24}H_{20}As^+$	(AsPh ₄) ₂ [Pt ₃ (CO) ₆] ₄	Tri	pī .	

^a C₁₁H₁₄ = tricyclo[6.3.0.0^{2,7}]undeca-3,5-diene. ^b C₆H₆Me₄S = 3,3,6,6-tetramethyl-1-thiacyclohept-4-yne. ^c Previous unit cell had only half correct volume, leading to insoluble Patterson function. ^d Not fully refined.

148	C ₂₅ H ₁₅ Co04	Co (CO) 3 (C3Ph3CO)	M	P21/a	8
167	C25H16Br2FeO3	Fe(CO) ₃ (C ₂₂ H ₁₆ Br ₂) ^a	м	P21/n	.4
48	С ₂₅ н ₁₈ N ₂ 05Р. н ₂ 0	$Rh(C_{6}H_{3}N_{2}O_{4})$ (CO) (PPh ₃). $H_{2}O^{b}$	м	P2 1/a	4
254	C ₂₅ H ₁₉ Fe ⁺ . BF ₄ ⁻	[FcC3Ph2]BF4	н	P21/c	4
221	C ₂₅ H ₂₀ MnO ₂ P	An (CO) ₂ (PPh ₃) (C ₅ H ₅)	Tri	PĪ	2
166	С ₂₅ ^H 21Сг03 ^P	Cr (CO) 3 (PPh3) [C (CH2) 3]	м	C2/c	16
35	C25H33CliroP3	IrCl (CO) (PMe ₂ Ph) ₃	м	P21/c	4
76	C25H33CoN605	Co (CH2CH2CN) [NH2CHPACH (OH) Ph] (dmg)2	м	P21	4
382a	С ₂₅ H ₃₅ Al ₃ H02	[MoH(C5H5)(C5H4)]2A13He5	O	P212121	4
			0	P2,2,2,	4

12.90(5)	11.48(5)	7.70(5)	94.00(1)	95.00(1)	90.05(1)	∿1500	16.3	-		248
10.028(2)	10, 578(4)	11.291(4)	72.06(4)	81.56(4)	62.53(4)	2525	3.3			249
11.608(2)	12.533(3)	13.755(2)		101.01(1)		3595	3.0	4.0		250
9.701(5)	10.060(5)	11.993(6)		99.38	· .	985	7.8			251
8.524(3)	9.092(3)	13.152(4)	56.03(2)	110.13(2)	103.96(2)	2578	4.3	5.2		156
4.717(6)	14.716(4)	9.867(5)		112.00(5)		1411	5.3	6.1		252
10,15(1)	18.82(2)	7.85(1)		95.0(1)		1839	7.2			253
11.44(1)	33.56(3)	8.33(1)			92.7(1)	1595	8.6			253
16.364(3)	18.015 (3)	8.859(3)		92.28(3)		2052	7.7			254
10.028(4)	13.880(6)	15.018(6)	95.87(3)	101.27(3)	112.02(3)		5.8	8.9	c	255
15.239(5)	19.377(14)	14.628	106.66(4)	101.10(3)	85.65(5)	5322	đ			103

11.537 21.243 18.336 111.68 2016 9.9 19.597(8) 8.232(6) 13.770(7) 89.38(5) 838 14.5 27.87(1) 11.200(5) 7.695(1) 99.5(1) 2136 6.2 8.219(3) 14.708(3) 17.857(3) 103.60(5) 1410 5.7 4.6 103.47(16) 9.41(2) 10.60(2) 11.36(2) 79.47(16) 101.72(16) 2931 10.8 36.955(3) 10.789(1) 22.799(3) 100.80(1) 4731 8.8 8.7 16.25(2) 30.07(5) 147.30(3) 10.38(1) 1331 3.3 4.5 13.31 8.84 23.90 108.0 2127 14 14.458(6) 9.009(5) 2670 19.383(7) 6.9 19.398(4) 14.438(9) 9.035(2) 1213 6.6 6.3

References p. 156

135

256

257

25H

259

260

261

26:

263

264

^a C₂₂H₁₆Br₂ = 1,2,2a,3-n⁴-1-bromo-2-methylene-3-naphthyl(1'-bromo-2'-naphthyl)methane. ^b C₆H₃N₂O₄ = pyrazine-2,3-dicarboxylate.

195	C ₂₆ H ₁₈ Cl ₂ Zr	$2rCl_2(n^3-C_{13}H_9)(n^5-C_{13}H_9)^{\alpha}$	H .	P21/n	4
227	C ₂₅ H ₂₀ BFeNO ₂	$Fe(CNBPh_3)(CO)_2(C_5H_5)$	Tri	Pl	2
210	C ₂₆ H ₂₀ Cr04S ₂ W	(C ₅ H ₅) ₂ W(SPh) ₂ Cr(CO) ₄	Ж	B2/Ъ	8
211	С ₂₆ Н ₂₀ Мо0 ₄ S ₂ W	(C5H5)2W(SPh)2H0(CO)4	M	B2/b	8
212	C25H2004S2W2	(C5H5)2W(SPb)2W(CO)4	м	B2/b	8
26	C ₂₆ H ₂₂ F ₆ IrN ₂ OP	Ir[NHC(CF3) CMe(CH2)C(CF3)NH](CO)- (PPh3)	м	P21/c	4
258	C ₂₆ H ₂₈ Fe ₂	Fe(C5H4CHe2CH2CMeFcC5H4)	0	Pbca	8
383.	С ₂₆ н ₃₄ А14Мо ₂	[Mo(C ₅ H ₄) ₂ Al ₂ Me ₃] ₂	Tri	PĪ	1
228	C ₂₆ H ₃₉ FeN ₃ 0	Fe(C(NCy)C(NHCy)CHC(NHBu ^t))(CO)(C5H5)	м	P21/c	4
150	C ₂₆ H ₅₄ Br ₂ N1 ₂	[N1Br (PPr 3)]2C8H12	Tri	PĪ	1
302	C ₂₆ H ₅₆ B ₁₀ P ₂ Pr	1-Pt (CHEtPPr ₂) (PPr ₃)-2-PhC ₂ B ₁₀ H ₁₀	Tri	PĨ	2

^a n³-C₁₃H₉ = 9,9a,8a-n³-fluorenyl; n⁵-C₁₃H₉ = 9,9a,4a,4b,8a-n⁵-fluorenyl

337	C ₂₇ H ₁₅ Fe ₂ O ₉ PPc	$Fe_2Pr(CO)_9(PPh_3)$	M	P21/c	. 4
26Ja	C ₂₇ H ₂₂ As ₂ CrG ₂	Cr (CO) ₂ [(n ⁶ -Ph)PhAsCH ₂ AsPh ₂]	Tri	PĪ	2
77	C27H27C13CoN504	Co[CCl:C(C ₆ I4Cl-p) ₂](py)(dmg) ₂	0	Pn2 ₁ a	8
106a	С ₂₇ н ₂₇ СгО ₆	ст (С ₆ н ₄ С ₃ н ₅ 0 ₂) 3 ^{<i>a</i>}	O	Pna21	4
323	C ₂₇ H ₂₈ Fe ₂ O ₃	Fe ₂ (CO) ₃ (C ₄ Bv ^c ₂ Ph ₂)	Tet	14	4
243	C ₂₇ H ₂₉ ORh	Rh(dba)(C5Me5)	M	P21/a	4
249	C ₂₇ H ₃₃ CoSi ₂	Co[C4Ph2(SIMe3)2](C5B5)	O	Pbca	8
30	C ₂₇ H ₃₃ IO ₃ P ₃ W ⁺ .C ₂₄ H ₂₀ B ⁻	[WI(CO) ₃ (PMe ₂ Ph) ₃]BPh ₄	Tri	Pl	1
152	C ₂₇ E ₅₃ N1P	NiMe (CHMeCHCHMe) [PMe (menthyl)2]	0	P212121	4

^{*A*} C₆H₄C₃H₅O₂ = 2'-(2-phenyl-1,3-dioxolano).

12.347	13.771	11.922		98.2		2697	5.8	266
11.58(1)	10.20(1)	10.25(1)	111.7(1)	79.9(1)	97.4(1)	3520	5.	267
17.85(3)	18.23(3)	15.83(3)			112.8(3)	2724	7.5	268
18.07(3)	18.33(3)	16.23(3)			112.6(3)	2702	7.0	268
17.90(3)	18.37(3)	15.93(3)			112.3(3)	2576	9.0	258
15.615(9)	10.418(6)	17.816(11)		113.68(5)		3277	4.5	275
14.719(7)	24.630(12)	11.354(5)				4075	11.7	269
9.029(5)	9.125(5)	9.748(5)	64.86(2)	70.34(2)	86.88(2)	237 9	9.7	264
11.732	10.380	22.831		112.97		3298	6.4	270
13.72(1)	7.93(1)	7.89(1)	103.1(1)	83.8(1)	103.3(1)	1960	10.2	271
11.77(1)	10.20(1)	15.84(1)	82.5(1)	95.2(1)	106.5(1)	3407	5.3	272

. . .

11.88	14.13	17.49		106.9		1626	7.2		273
7.609(3)	8.563(3)	18.677(5)	83.16(2)	82.52(2)	81.66(2)	3208	3.2	4.2	274
25.50(2)	23,13(2)	9.728(7)				3545	4.9		276 '
21.804	8.651	12.702				1812	6.8		271
* 15.093(5)		18.641(4)				1484	6.1		278
14.348(12)	14.063(13)	11.393(10)		104.42(3)		2100	3.5		279
29.622(7)	9.967(2)	17.140(3)				3173	3.8	4.4	280
12.216(9)	10.100(8)	10.287(11)	100.55(9)	104.87(12)	89.31(8)	3866	5.2		281
14.446(1)	13.727(1)	11.895(1)				2689	3.65	4.55	194

References p. 156

138				
229a	C28H20C110Fe408Sb2	[FeC1(CD)2(C5H5)]4(SbC13)2	Tri PĪ	2
20	C ₂₈ H ₂₂ FeO ₃ P ₂	Fe (CO) 3 (dppn)	Tri PÎ	2
73	C28H27FeN4	FePh(C ₂₂ H ₂₂ N ₄) ^{<i>a</i>}	Tri PĪ	2
87	С ₂₈ Н ₂₉ 04РРд.ჭС ₆ Н ₆	Pd[CH(COMe)2](acac)(PPb3).\$C6H6	H C2/c	8
205	C ₂₈ H ₃₁ Clot1	$TiCl(OC_6H_3Me_2)(C_5H_5)[C_5H_3(Me)CHe_2$	Ph] H P21/n	
238	С ₂₈ н ₃₂ ч	$W[CH_2(C_6H_3Me_2)]_2(C_5H_5)_2$	M P2 ₁ /c	4

a C_{22H22N4} = 2,3:9,10-dibenzo-1,4,8,11-tetraazacyclotetradeca-2,5,9,12-tetraenato. b Racemic, m.p. 164°.

109	C ₂₉ H ₂₄ mO ₃ PS	Mn (C6H4CH2SMe) (CO) 3 (PPh3)	Tri	РĨ	2
266	C ₂₉ II ₂₅ BRu	Ru(C5H5)((1 ⁶ -Ph)BPh3]	м	P21/c	4
24	C ₂₉ H ₂₈ O ₂ P ₂ Rh ⁺ .F ₆ P ⁻	{Rh(CO)[O(CH ₂ CH ₂ PPh ₂) ₂]}PF ₆	Tri	РĪ	2
66	C ₂₉ H ₅₃ Cl ₂ N ₄ Ta	TaCl2Me[(NCy)2CHe]2	н	P21/c	4
2 26	C ₃₀ H ₂₀ Cl ₂ Cu ₂ Fe ₂ O ₄	[Fe(C_2 PhCuCl)(CO) ₂ (C_5H_5)] ₂	м	P21/a	2
183	C ₃₀ H ₂₈ Th ₂	$[Th(C_5H_4)(C_5H_5)_2]_2$	0	Pnnm	4
61a	$C_{30}H_{32}AuI_{2}N_{4}^{+}$. $C10_{4}^{-}$. $C_{4}H_{10}O$	${Au I_2[C(NHC_6H_4Me-p)_2]_2}C10_4.Et_20$	M	P21/c	4
268	C ₃₀ H ₃₈ BO ₆ P ₂ Rh	$Rh[P(OHe)_3]_2(\eta^6-Ph)BPh_3$	м	P21/c	4
14	С ₃₀ Н ₅₆ Аз ₈ Мо ₂ 0 ₆	Mo2(CO)6(AsPr ⁿ)8	м	P21/n	4
265	С ₃₀ н ₅₆ мо ₂ №2 [₽] 4	[Mo(dmpe)(C ₆ H ₃ He ₃)] ₂ N ₂	• •	Pbca	4
349	C ₃₀ O ₂₈ Rh ₁₅ H ₃ 0 ⁺	H ₃ 0[Rh ₁₅ C ₂ (CO) ₂₈]	0	Pbca	4
346	C ₃₀ O ₃₀ Pt ₁₅ ²⁻ .2C ₂₄ H ₂₀ As ⁺	(AsPh4)2[Pt3(CO)6]5	Tri	Pī	2
319	C ₃₁ H ₂₅ Fe ₂ O ₆ P	<i>cis-</i> Fe ₂ (CO) ₃ [P(OPh) ₃](C ₅ H ₅) ₂	Tri	РĪ	4
1999 - A. A.			· . · ·		
314	C ₃₂ H ₂₂ Fe ₂ O ₇ I	Fe ₂ (CO) ₇ (dppm)	M	₽21/c	4
120	C ₃₂ H ₆₀ N1P ₂	N1(C2Me4)[Cy2P(CH2)2PCy2]	M	P21/n	4

Co (C4Ph4) (C5H3I2)

Co (C4Ph4) (C5H4I)

P21/c

Pbcn

16

М

o

252

251

.C33H23CoI2

C33H24CoI

								139	•	
12.513(3)	18.618(5)	10.899(3)	104.20(2)	115.50(2)	92.15(2)	2001	7.4			284
12.08(1)	9.63(1)	11.35(1)	101.02(3)	90.92(2)	101.13(3)	2060	6.3	6.5		285
9.645(1)	12.544(1)	9.969(1)	88.26(1)	76.82(1)	72.22(1)	4206	6.6	4.7		286
36.444(8)	11.836(2)	16.170(4)		124.70(4)		2806	7.8	8.1		283
14.16(2)	12.91(2)	13.18(2)		96.9(5)		1939	6.2		ь	287
8.619	22.278	11.921		94.97		3586	3.4			288

11.029(22)	13.485(26)	9.123(18)	94.52(3)	109.90(3)	98.14(3)	3385	5.7		289
9.527(4)	15.381(6)	15.518(7)		105.09(5)		2048	3.2	3.6	290
10,907(3)	11.048(2)	13.405(3)	94.19(2)	82.30(2)	107.98(2)	2384	6.9		291
13.521(8)	13.084(8)	17.916(8)		93.78		3198	8.0		292
12.57(1)	18.27(2)	7.15(1)		115.3(1)		1578	7.ì		293
9.758(4)	8.528(3)	14.397(5)				790		7	294
10.03	15.915	25.21		-101.63		3521	5.4	6.2	245
15.59(1)	11.51(1)	19.74(1)		120.72(7)		2540	5.1		296
21.17	16.97	12.98		103.2		2780	6.3		151
13, 309(7)	16.582(9)	16.438(9)				3291	3.1		297
15.01(2)	17.34(2)	18.85(2)							224
14.783(8)	26.426(13)	13.835(4)	102.73(3)	118, 16(3)	95.28(4)	3558	5.9	6.3	103
14. 331 (5)	17. 335 (9)	12,482(7)	102.12(4)	92.02(4)	66.44(4)	3605	7.5	9.0	298
11.257(2)	11.926(3)	22.911(8)		100.22(2)		2388	6.0	7.7	299
17,1306(7)	16.9016(7)	11.4899(8)		100.082(5)		4995	3.3	5.3	300
10.95(1)	14.39(1)	17.56(1)		97.3(1)	È	2382	8.3		301
21.31(1)	15.25(1)	32.25(1)	-			1920	6.1		301
References p.	156		•	-					
		1. 1. 1. 1. 1. 1.		•					

(4) 100 (1993) (1993)					
김 승규는 것을 가장하는 것이 없다.		지수는 것이 아파 등을 가지?		신 지도 전신 문영을 얻을	915
140		이 것이 아무런지 않는 것이다.			. s.
	이 같은 것을 같이 같은 것이라. 것을 물				÷
		Rh(CoH.) o (CePh.C1)		M P2 ₁ /n	4_
242 C33828CIBA	김 영상은 일양을 관할 수 있는 것 같다.				ъ., н
				김 전에 걸을 하는 것이다.	<u>.</u>
171 C-aHaaFeOaSt		Fe(CO) 3[C886 (CPh3) (SiHe ₃)]	Tri Pl	2
111 -330304-03-4					1
		지수는 영화가 가 문문한 것		n	2
25 CasHaaOsP2Rh	.F6P	{Rh(CO) (H2O) [O(CH2C	H2OCH2CH2PPh2J2J3-	ITI FL	£.,
33 50 5 -		PF			• .
					. 1
6	2 2 4 5-n4-1-trimethylei	1v1-7-rrinhenvlmethy	lbicyclo[4.2.0]octa-	2,4,7-triene.	- 1

250 C ₃₄	H2 CON	C (C4Ph4) (C5H4CN)	P21/c 4

231	C ₃₅ H ₁₈ F ₉ N ₂ PRu	$R_{u}(C_{6}F_{4}N:NC_{6}F_{5})(C_{5}H_{4}C_{6}H_{4}PPb_{2})$	M	P2 1/c	4
101	C ₃₆ H ₃₀ N ₄ O4Pd ₂	[Fd(apo)]2salophen	м	P2 ₁ /c	4
52	C ₃₅ H ₃₃ I ₂ N ₂ OPRu	RuI ₂ [Сн:Же(С ₆ Н,Ме-р)] (СО) (СNС ₆ Н,Ме-р) (PPh ₃)	Tri	РĨ	2
155	C ₃₆ H ₄₅ Cl ₂ PPd.C ₂ H ₄ O ₂	PdC1[(HC2Bu ^t)3C1](PPh3).MeCO2H	м	P21/=	4
360	C36H54C16:Hb3 ⁺ .C1 ⁻	[Nb3Cl6(C6Me6)3]Cl	Hex	P6/m	1
365	C ₃₇ H ₂₀ F6Fe ₃ O7P ₂	$Fe_3(CO)_7[Ph_2PC_4(CF_3)_2](PPh_2)$	M	P21/c	4
		and a second second Second second second Second second			• •

370	C37H2009OS3	0s3(1D)9(C+b+)	н	P21/c	4
			0	Iba2	8
56	C ₃₇ H ₃₀ Cl ₂ N ₂ ORh ₂	[Rh(CPh ₂)C1(py)] ₂ (CO)	M	C2	2
33	C ₃₇ H ₃₀ INO ₂ P ₂ Ru	RuI (CO) (NO) (PPh ₃) ₂	0	Pbcn	4
			· · ·	• •	
		r_{-} (on) f_{D}_{-} PC (r_{-}) f_{D}_{-})	-u- Tri	рī	2

364	$C_{36}H_{20}F_{6}Fe_{3}O_{6}P_{2}$. $C_{6}H_{6}$	Fe ₃ (CO) ₈ [Ph ₂ PC ₄ (CF ₃) ₂](PPh ₂).C ₆ H ₅	Tri	PĪ	. 2
106	C ₃₈ H ₂₉ ClP ₂ Pt	∆-PtCl[o-Ph2PC6H4C:CEC6H4PPh2-0]	Ж.	P21	2
392	C ₃₈ H ₃₀ FeOSn	$Fe(5nPh_3)(CO)(C_2Ph_2)(C_5H_5)$	M	₽21/c	4
27	C ₃₀ R ₃₀ N10 ₂ P ₂	N1 (CO) ₂ (PPh ₃) ₂	м	P2/c	2
82	C ₃₈ H ₃₁ Cl ₂ F ₂ IrOP ₂	IrCl ₂ (CHF ₂) (CO) (PPh ₃) ₂	M	₽21/c	4
130	C ₃₈ H ₃₈ N1 ₂ O ₂ P ₂	$Ni_2(CO)_2(Ph_2PC_2Bu^{t})_2$	M	P21/n	4
366	CapHa 2FcFe30aF2-2C5H6	Fe3(CO)7[Pb2PC4(CF3)2](CO2He)(PPb2).	Tri	РĨ	2
	33742.0 - 3 - 3 - 4 - 4	2C ₆ H6			

15.346(2) 10.393(2) 16.081(2) 104.95(1) 4285 5.9 10.9668(4) 11.496(4) 12.213(3) 95.63(3) 108.56(3) 91.60(3) 3626 5.2 9.337(2) 11.446(2) 17.554(3) 94.08(1) 79.64(1) 111.98(1) 3106 8.9 10.19(1) 15.24(1) 16.85(1) 107.0(1) 1718 5.3 15.659(14) 13.338(11) 14.741(11) 97.38(3) 3092 7.5 7.109(4) 25.321(3) 17.979(8) 107.8(4) 1122 6.9 11.6407(1) 10.9139(8) 16.587(2) 87.98 91.67 62.25 2731 5.5 10.718(5) 9.725(5) 36.46(2) 90.2(1) 3056 6.7 12.257 12.2571(13) 8.0377(13) 133.54(1) 2925 6.3 191.79(5) 4607 9.5 191.6 191.9 133.54(1) 12.2 191.6 191.6 191.9 133.54(1) 292.5 6.3 191.77(2) 18.1 7 191.6 6.0 191.9 131.7 191.6 6.0 191.9 <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th>•</th><th></th><th>141</th><th></th><th></th></td<>							•		141		
10.968(4) 11.496(4) 12.213(5) 95.63(3) 108.56(3) 91.60(3) 3626 5.2 9.837(2) 11.416(2) 17.554(3) 94.08(1) 79.64(1) 111.98(1) 3106 8.9 10.19(1) 15.24(1) 16.85(1) 107.0(1) 1718 5.3 15.659(14) 13.338(11) 14.741(11) 97.38(3) 3092 7.5 7.109(4) 25.321(3) 17.979(8) 107.8(4) 3122 6.9 11.640(1) 10.9139(8) 16.587(2) 87.98 97.67 62.25 2731 5.5 10.738(5) 9.725(5) 36.46(2) 90.2(1) 3056 6.7 12.2571(13) 8.0377(13) 133.54(1) 2925 6.3 17.148(5) 9.796(4) 29.565(16) 91.79(5) 4807 9.5 19.45(8) 18.59(4) 9.80(2) 133.54(1) 2925 6.3 19.45(8) 18.59(4) 9.80(2) 191.6 8.0 191.6 19.14(1) 10.511 11.41(1) 121.17(3) 1831 7 19.77(2) 16.13(3)<	5.846(2)	10.593(2)	16.081(2)		104.95(1)	· · · ·	4285	5.9			:
9.837(2) 11.416(2) 17.554(3) 94.08(1) 79.64(1) 111.98(1) 3106 8.9 H8.19(1) 15.24(1) 16.85(1) 107.0(1) 1718 5.3 15.650(14) 13.338(11) 14.741(11) 97.38(3) 3092 7.5 7.109(4) 25.321(3) 17.979(8) 107.8(4) 3122 6.9 11.640(1) 10.9139(8) 16.587(2) 87.98 97.67 62.25 2731 5.5 10.738(5) 9.725(5) 36.46(2) 90.2(1) 3056 6.7 12.2571(13) 8.0377(13) 133.54(1) 2925 6.3 17.148(5) 9.796(4) 29.565(16) 91.79(3) 4807 9.5 19.46(1) 10.05(1) 11.41(1) 121.17(3) 1831 7 19.46(4) 18.59(4) 95.80(2) 192.17(3) 1831 7 19.46(4) 16.03(3) 122.17(3) 1831 7 1977(2) 16.13(3) 122.17(3) 1831 7 1976(6) 14.110(6) 14.753(4) 97.26(3) 92.35(4) 112.31(4	0.968(4)	11.496(4)	12.213(5)	95.63(3)	108.56(3)	91.60(3)	362C	5.2			:
10.19(1) 15.24(1) 16.85(1) 107.0(1) 1718 5.3 15.650(14) 13.338(11) 14.741(11) 97.38(3) 3092 7.5 7.109(4) 25.321(3) 17.979(8) 107.8(4) 3122 6.9 11.640(11) 10.9139(8) 16.587(2) 87.98 γ .67 62.25 2731 5.5 10.738(5) 9.725(5) 36.46(2) 90.2(1) 3056 6.7 12.2577(13) 8.0377(13) 413 12 12.125(4) 21.075(4) 19.701(9) 133.54(1) 2925 6.3 19.716(5) 9.796(4) 29.565(16) 91.79(5) 4807 γ .5 19.16(1) 10.05(1) 11.41(1) 121.17(3) 1831 7 19.76(2) 16.13(3) 122.117(3) 1831 7 11.78(6) 14.110(6) 14.753(4) 97.26(3) 92.35(4) 112.31(4) 4039 7.9 11.78(6) 14.110(6) 14.753(4) 97.26(3) 92.35(4) 112.31(4) 4039 7.9 11.78(6) 14.110(6) 14.753(4) <t< td=""><td>9.837(2)</td><td>11.416(2)</td><td>17.554(3)</td><td>94.08(1)</td><td>79.64(1)</td><td>111.98(1)</td><td>3106</td><td>8.9</td><td></td><td></td><td>2</td></t<>	9.837(2)	11.416(2)	17.554(3)	94.08(1)	79.64(1)	111.98(1)	3106	8.9			2
10.19(1) 15.24(1) 16.85(1) 107.0(1) 1718 5.3 15.650(14) 13.338(11) 14.741(11) 97.38(3) 3092 7.5 7.109(4) 25.321(3) 17.979(8) 107.8(4) 3122 6.9 11.640(1) 10.9139(8) 16.587(2) 87.98 91.67 62.25 2731 5.5 10.738(5) 9.725(5) 36.46(2) 90.2(1) 3056 6.7 12.2571(13) 8.0377(13) 413 12 12.125(4) 21.075(4) 19.701(9) 133.54(1) 2925 6.3 19.14(1) 10.05(1) 11.41(1) 121.17(3) 1831 7 19.14(1) 10.05(1) 11.41(1) 121.17(3) 1831 7 19.14(1) 10.05(1) 11.41(1) 121.17(3) 1831 7 19.14(1) 10.05(1) 11.41(1) 121.17(3) 1831 7 1977(2) 16.13(3) 97.26(3) 92.35(4) 112.31(4) 4039 7.9 11.7.78(16) 14.110(6) 14.753(4) 97.26(3) 92.35(4) 112.31(4)<											
15.650(14) 13.338(11) 14.741(11) 97.38(3) 3092 7.5 7.109(4) 25.321(3) 17.979(8) 107.8(4) 3122 6.9 11.640(1) 10.9139(8) 16.587(2) 87.98 97.67 62.25 2731 5.5 10.738(5) 9.725(5) 36.46(2) 90.2(1) 3056 6.7 12.2571(13) 8.0377(13) 133.54(1) 2925 6.3 12.125(4) 21.075(4) 19.701(9) 133.54(1) 2925 6.3 12.125(4) 21.075(4) 19.701(9) 133.54(1) 2925 6.3 12.125(4) 10.05(1) 11.41(1) 121.17(3) 1831 7 19.14(1) 10.05(1) 11.41(1) 121.17(3) 1831 7 19.74(2) 10.77(2) 16.13(3) 97.26(3) 92.35(4) 112.31(4) 4059 7.9 11.7 NH(6) 14.110(6) 14.753(4) 97.26(3) 92.35(4) 112.31(4) 4059 7.9 11.630(3) 15.676(1) 17.881(4) 92.0(1) 17 17 11.630(4) <t< td=""><td>0.19(1)</td><td>15.24(1)</td><td>16.85(1)</td><td></td><td>107.0(1)</td><td></td><td>1718</td><td>5.3</td><td></td><td></td><td>3</td></t<>	0.19(1)	15.24(1)	16.85(1)		107.0(1)		1718	5.3			3
7. 109(4)25. 321 (3)17. 979(8)107. 8(4)31226. 91. 640(1)10. 9139(8)16. 587(2)87. 98 $97. 67$ 62. 2527315. 50. 738(5)9. 725(5)36. 46(2)90. 2(1)30566. 72. 2571 (13)8. 0377 (13)413122. 125(4)21. 075(4)19. 701 (9)133. 54(1)29256. 32. 14R(5)9. 796 (4)29. 565 (16)91. 79 (5)4807 $9. 5$ 18. 45 (8)18. 59(4)9. 80(2)191. 609. 14(1)10. 05 (1)11. 41 (1)121. 17 (3)183171. 7 / 34 (6)14. 110 (6)14. 753 (4)97. 26 (3)92. 35 (4)112. 31 (4)40397. 91. (35u (3)15. 676 (1)17. 881 (4)92. 0(1)17171. 770(1)8. 2663 (4)17. 056 (4)105. 711 (8)22404. 04. 2	5.650(14)	13.338(11)	14.741(11)		97.38(3)		3092	7.5			
11.640(1) 10.9139(8) 16.587(2) 87.98 97.67 62.25 2731 5.5 10.738(5) 9.725(5) 36.46(2) 90.2(1) 3056 6.7 12.2571(13) 8.0377(13) 413 12 2.125(4) 21.075(4) 19.701(9) 133.54(1) 2925 6.3 2.125(4) 21.075(4) 19.701(9) 133.54(1) 2925 6.3 2.148(5) 9.796(4) 29.565(16) 91.79(5) 4807 9.5 18.59(4) 9.80(2) 191.4 191.6 8.0 191.7(3) 1831 7 19.76(2) 10.77(2) 16.13(3) 121.17(3) 1831 7 19.76(2) 10.77(2) 16.13(3) 97.26(3) 92.35(4) 112.31(4) 4059 7.9 11.738(6) 14.110(6) 14.753(4) 97.26(3) 92.35(4) 112.31(4) 4059 7.9 11.738(6) 16.934(6) 9.957(4) 119.02(2) 4872 4.2 4.0 11.058(3) 15.676(1) 17.881(4) 92.0(1) 17 17 11.	7.109(4)	25.321(3)	17.979(8)		107.8(4)	·	3122	6.9			3
0.738(5) $9.725(5)$ $36.46(2)$ $90.2(1)$ 3056 6.7 $2.2571(13)$ $8.0377(13)$ 413 12 $2.155(4)$ $21.075(4)$ $19.701(9)$ $133.54(1)$ 2925 6.3 $2.148(5)$ $9.796(4)$ $29.565(16)$ $91.79(5)$ 4807 9.5 $9.74(1)$ $10.05(1)$ $11.41(1)$ $121.17(3)$ 1831 7 $9.17(2)$ $16.13(3)$ $122.17(3)$ 1831 7 $1.738(6)$ $14.110(6)$ $14.753(4)$ $97.26(3)$ $92.35(4)$ $112.31(4)$ 4039 7.9 $1.633(4)$ $16.934(6)$ $9.957(4)$ $119.02(2)$ 4872 4.2 4.0 $1.050(3)$ $15.676(1)$ $17.881(4)$ $92.0(1)$ 17 $1.770(1)$ $8.2663(4)$ $17.056(4)$ $105.711(8)$ 2240 4.0 4.2	1.640(1)	10.9139(8)	16.587(2)	87.98	90.67	62.25	2731	5.5			3
2.2571(13) $8.0377(13)$ 413 12 $2.155(4)$ $21.075(4)$ $19.701(9)$ $133.54(1)$ 2925 6.3 $2.148(5)$ $9.796(4)$ $29.565(16)$ $91.79(5)$ 4807 9.5 $8.45(8)$ $18.59(4)$ $9.80(2)$ 1916 8.0 $91.79(5)$ 4807 9.5 $9.14(1)$ $10.05(1)$ $11.41(1)$ $121.17(3)$ 1831 7 $9.17(2)$ $16.13(3)$ $97.26(3)$ $92.35(4)$ $112.31(4)$ 4059 7.9 $1.7781(6)$ $14.110(6)$ $14.753(4)$ $97.26(3)$ $92.35(4)$ $112.31(4)$ 4059 7.9 $1.7781(6)$ $14.110(6)$ $14.753(4)$ $97.26(3)$ $92.35(4)$ $112.31(4)$ 4059 7.9 $1.7781(6)$ $14.110(6)$ $14.753(4)$ $97.26(3)$ $92.0(1)$ 17 17 $1.0501(3)$ $15.676(1)$ $17.881(4)$ $92.0(1)$ 17 17 $1.770(1)$ $8.2663(4)$ $17.056(4)$ $105.711(8)$ 200 4.0 4.2	0.736(5)	9.725(5)	36.46(2)		90.2(1)		3056	6.7			3
2. $125(4)$ $21.075(4)$ $19.701(9)$ $133.54(1)$ 2925 6.3 2. $148(5)$ $9.796(4)$ $29.565(16)$ $91.79(5)$ 4807 9.5 $81.45(8)$ $18.59(4)$ $9.80(2)$ $191b$ 8.0 $191b$ 8.0 9 $9.14(1)$ $10.05(1)$ $11.41(1)$ $121.17(3)$ 1831 7 $9.14(1)$ $10.05(1)$ $11.41(1)$ $121.17(3)$ 1831 7 $19.76(2)$ $16.13(3)$ 1066 13.7 1066 13.7 $1.7 38(6)$ $14.110(6)$ $14.753(4)$ $97.26(3)$ $92.35(4)$ $112.31(4)$ 4059 7.9 $0.633(4)$ $16.934(6)$ $9.957(4)$ $119.02(2)$ 4872 4.2 4.0 $1.050(3)$ $15.676(1)$ $17.881(4)$ $92.0(1)$ 17 $1.770(1)$ $8.2663(4)$ $17.056(4)$ $105.711(8)$ 2240 4.0 4.2	2.2571(13)		8.0377(13)				413	12			3
2.14R(5) $9.796(4)$ $29.565(16)$ $91.79(5)$ 4807 9.5 $8.45(8)$ $18.59(4)$ $9.80(2)$ $191b$ 8.0 $9.14(1)$ $10.05(1)$ $11.41(1)$ $121.17(3)$ 1831 7 $9.14(1)$ $10.05(1)$ $11.41(1)$ $121.17(3)$ 1831 7 $9.14(1)$ $10.05(1)$ $11.41(1)$ $121.17(3)$ 1831 7 $9.17(2)$ $16.13(3)$ 1066 13.7 $1.738(6)$ $14.110(6)$ $14.753(4)$ $97.26(3)$ $92.35(4)$ $112.31(4)$ 4059 7.9 $9.6313(4)$ $16.934(6)$ $9.957(4)$ $119.02(2)$ 4872 4.2 4.0 $1.050(3)$ $15.676(1)$ $17.881(4)$ $92.0(1)$ 17 17 $1.770(1)$ $8.2663(4)$ $17.056(4)$ $105.711(8)$ 2240 4.0 4.2	2.325(4)	21.075(4)	19.701(9)		133.54(1)		2925	6.3			3
2.14R(5) $9.796(4)$ $29.565(16)$ $91.79(5)$ 4807 9.5 $18.45(8)$ $18.59(4)$ $9.80(2)$ $191t$ 8.0 $191t$ $191t$ 8.0 $191t$ $191t$ $191t$ $101t$ $110t$ $100t$											
18.45(8) $18.59(4)$ $9.80(2)$ 1916 8.0 $19.14(1)$ $10.05(1)$ $11.41(1)$ $121.17(3)$ 1831 7 $19.7(2)$ $10.77(2)$ $16.13(3)$ 1066 13.7 $11.786(6)$ $14.110(6)$ $14.753(4)$ $97.26(3)$ $92.35(4)$ $112.31(4)$ 4059 7.9 $0.631(4)$ $16.934(6)$ $9.957(4)$ $119.02(2)$ 4872 4.2 4.0 $11.050(3)$ $15.676(1)$ $17.881(4)$ $92.0(1)$ 17 $11.770(1)$ $8.2663(4)$ $17.056(4)$ $105.711(8)$ 2240 4.0 4.2	2,148(5)	9.796(4)	29.565(16)	-	91.79(5)		4807	9.5		۱	
19, 14(1) $10, 05(1)$ $11, 41(1)$ $121, 17(3)$ 1831 7 $19,(2)$ $10, 77(2)$ $16, 13(3)$ 1066 13.7 $11, 736(6)$ $14, 110(6)$ $14, 753(4)$ $97, 26(3)$ $92, 35(4)$ $112, 31(4)$ 4059 7.9 $10, 633(4)$ $16, 934(6)$ $9.957(4)$ $119, 02(2)$ 4872 4.2 4.0 $11, 050(3)$ $15, 676(1)$ $17, 881(4)$ $92, 0(1)$ 17 $11, 770(1)$ $8, 2663(4)$ $17, 056(4)$ $105, 711(8)$ 2240 $4, 0$ 4.2	8,45(8)	18.59(4)	9.80(2)				1916	8.0		J	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9.14(1)	10.05(1)	11.41(1)		121.17(3)		1831	7			:
1,738(6) $14.110(6)$ $14.753(4)$ $97.26(3)$ $92.35(4)$ $112.31(4)$ 4059 7.9 $0.633(4)$ $16.934(6)$ $9.957(4)$ $119.02(2)$ 4872 4.2 4.0 $1.050(3)$ $15.676(1)$ $17.881(4)$ $92.0(1)$ 17 $1.770(1)$ $8.2663(4)$ $17.056(4)$ $105.711(8)$ 2240 4.0 4.2	9.26(2)	10,77(2)	16.13(3)				1066	13.7			
u.633(4) 16.934(6) 9.957(4) 119.02(2) 4872 4.2 4.0 u.050(3) 15.676(1) 17.881(4) 92.0(1) 17 u.770(1) 8.2663(4) 17.056(4) 105.711(8) 2240 4.0 4.2	1.738(6)	14.110(6)	14.753(4)	97.26(3)	92.35(4)	112.31(4)	4059	7.9			
1.050(3) 15.676(1) 17.881(4) 92.0(1) 17 1.770(1) 8.2663(4) 17.056(4) 105.711(8) 2240 4.0 4.2	0.633(4)	16,934(6)	9.957(4)		119.02(2)		4872	4.2	4.0		
1.770(1) 8.2663(4) 17.056(4) 105.711(8) 2240 4.0 4.2	1.050(3)	15.676(1)	17.881(4)		92.0(1)			17			
	1.770(1)	8.2663(4)	17.056(4)		105, 711 (8)		2 240	4,0	4.2		
0.47(1) 14.45(2) 24.58(2) 97.68(5) 1945 3.9 7.1	0.47(1)	14.45(2)	24.58(2)		97.68(5)		1945	5.9	7.1		:
6.733 12.233 19.677 118.31 2268 7.0	6.733	12.233	19.677		118.31		2268	7.0			
0.319(8) 14.516(12) 17.944(9) 90.13(5) 110.34(5) 95.44(6) 4396 6.7 eferences p. 156	0.319(8) eferences p.	14.516(12) 156	17.944(9)	90.13(5)	110.34(5)	95.44(6)	4396	6.7			:

142					
141	C39830F6810P2	N1[(CF3)2 ^{CO}](PPh3)2	Ħ	221/n	- 4
121	C39H34P2Pd	Pd (C3B4) (PPh3)2	Tri	РĨ	2
232	C39H36CoO6P	Co[(PhC2CO2He)(MeO2CCH)2](PPh3)(C5H5)	Tri	pī	2
393	C39H45BrFeNgO2P2.C4H80	Fe[BrMg(C4Hg0)2](dppe)(C5H5).THF	M	P21/c	4
135	C40H30F6P2Pt	Pt[C2(CF3)2](PPh3)2	Tri	PĨ	2
395	С40H30040sSn2	trong-Os(SaPb3)2(CO)4	м	C2/c	8
83	C40H31Cl2F4Ir03P2.C6H6	IrCl (CHF ₂) (OCOCF ₂ Cl) (CO) (PPh ₃) ₂ . C ₆ H ₆	Tri	РĨ	2
37	C40H32Ir206P2S	[IrH(CO) ₂ (PPh ₃)] ₂ SO ₂	M	C2/c	4
148a	C40H33C12P2Rh.CH40	RhCl ₂ [<i>o</i> -Ph ₂ PC ₆ H ₄ CHCHCHeC ₆ H ₄ PPh ₂ - <i>o</i>]. MeOH	H	Cc	4
359a	C40H34Fe204P2Rh ⁺ .F6P ⁻	{ $Rh[Fe(C_5H_4Me)(CO)_2(PPh_2)]_2$ } PF_6	0	Pbca	8
379	С _{ц0} Н _ц цL1цНоц	[MoHL1(C5H5)2]4	н	C2/c	4
383	C ₄₀ H ₄₄ L14W4	[WHL1(C5H5)2]4	м	C2/c	4
105	C40H5004P2Pd2	{Pd(OAc)[CH2C6H,PBu ^t (o-tol)]}2	Tri	РĪ	2

380	C40H64Br4Mg4Mo2O2+C4H10O	[(C ₅ H ₅) ₂ MoHMgCyBr ₂ Mg(OEt ₂)] ₂ .Et ₂ O	н	C2/m	2
46	C41H30F60P2RuS2	Ru(CO)(PPb ₃) ₂ [S ₂ C ₂ (CF ₃) ₂] ^d	м	P21/c	4
	· · · · · · · · · · · · · · · · · · ·				

^aGrange isomer.

C42H30As2N40PL	$Pt[C_2(CN)_40](AsPh_3)_2$	H	P21/c	4
С ₄₂ H ₃₅ Hn0P ₂ .С ₆ H ₆	Μn (CO) (PPh ₃) ₂ (C ₅ H ₅). C ₆ H ₆	Tri	PĪ	2
С ₄₂ Н ₃₆ 04Р ₂ Рd	Pd[C2(CO2He)2](PPh3)2	M	PZ1/c	4
С42H37NDOP2	NbH ₂ (CO) (PPh ₃) ₂ (C ₅ H ₅)	Ħ	вь	4
C ₄₂ H ₃₈ P ₂ Pt	Pt (C6H8) (PPh3)2 ⁴	0	P212121	8
C42H4004P2Pt	trans-Pt (CO2Et)2(PPh3)2	Tri	РĪ	1
C42E41NiP2 ⁺ .Cl3Za ⁻	[N1(C ₅ H ₁₁)(PPh ₃) ₂]ZnCl ₃ ^b	0	Рьса	8
	C ₄₂ H ₃₀ As ₂ N ₄ OPt C ₄₂ H ₃₅ MnOP ₂ .C ₆ H ₆ C ₄₂ H ₃₆ O ₄ P ₂ Pd C ₄₂ H ₃₇ NbOP ₂ C ₄₂ H ₃₈ P ₂ Pt C ₄₂ H ₄₀ O ₄ P ₂ Pt C ₄₂ H ₄ N1P ₂ ⁺ .Cl ₃ Zn ⁻	C42H30A52N40Pt Pt[C2(CN)40](A5Ph3)2 C42H35Hn0P2.C6H6 Mn(C0)(PPh3)2(C5H5).C6H6 C42H3604P2Pd Pd[C2(CO2Me)2](PPh3)2 C42H3604P2Pd Pd[C2(CO2Me)2](PPh3)2 C42H37Hb0P2 NbH2(C0)(PPh3)2(C5H5) C42H38P2Pt Pt(C6H8)(PPh3)2 ^C C42H48P2Pt Pt(C6H8)(PPh3)2 ^C C42H4604P2Pt trans-Pt(C02Et)2(PPh3)2 C42H4604P2Pt [N1(C6H11)(PPh3)2]ZnC13 ^b	C42H30A32N40Pt Pt[C2(CN)40](ABPh3)2 H C42H35Hn0P2.C6H6 Mn(CO)(PPh3)2(C5H5).C6H6 Tri C42H3604P2Pd Pd[C2(C02Me)2](PPh3)2 H C42H3604P2Pd Pd[C2(C02Me)2](PPh3)2 H C42H3604P2Pd Pd[C2(C02Me)2](PPh3)2 H C42H3604P2Pd Pd[C2(C02Me)2](PPh3)2 H C42H36P2Pt Pt(C6H8)(PPh3)2(C5H5) H C42H38P2Pt Pt(C6H8)(PPh3)2 ^a O C42H4604P2Pt trans-Pt(C02Et)2(PPh3)2 Tri - C42H41NiP2 ⁺ .C13Zn [N1(C6H11)(PPh3)2]ZnC13 ^b O	$C_{42}H_{30}As_2N_4OPt$ $Pt[C_2(CN)_4O](AsPh_3)_2$ H $P2_1/c$ $C_{42}H_{35}MnOP_2 \cdot C_6H_6$ $Mn(CO)(PPh_3)_2(C_5H_5) \cdot C_6H_6$ Tri $P\overline{I}$ $C_{42}H_{36}O_4P_2Pd$ $Pd[C_2(CO_2Me)_2](PPh_3)_2$ H $P2_1/c$ $C_{42}H_{36}O_4P_2Pd$ $Pd[C_2(CO_2Me)_2](PPh_3)_2$ H $P2_1/c$ $C_{42}H_{36}P_2Pd$ $NbH_2(CO)(PPh_3)_2(C_5H_5)$ HBb $C_{42}H_{38}P_2Pt$ $Pt(C_6H_8)(PPh_3)_2^{ca}$ O $P2_12_12_1$ $C_{42}H_{40}O_4P_2Pt$ $trans-Pt(CO_2Et)_2(PPh_3)_2$ Tri $P\overline{I}$ $-C_{42}H_{41}NiP_2^{+}.C1_32n^{-}$ $[N1(C_6H_{11})(PPh_3)_2]ZnC1_3^{D}$ O $Fbca$

^a $C_6H_8 = 1, 4-n^2-\Delta^{1,4}$ -bicyclo[2.2.0]bexene. ^b $C_6H_{11} = 1, 1, 2-trimethylallyl.$, مادونیونی را در ماند ا

								143	
18.123(5)	19.879(5)	9.745(2)		93.46(2)		1406	8.7		322
19.475(2) 12.330	10.204(2) 17.834	18.341(2) 8.955	108.46(2) 98.12	85.46(1) 116.13	118.80(1) 81.13	4096 4673	5.1 10.6		323 314
12.258(4)	13.027(4)	26.577(11)		102.48(2)		1505	8		324
11.799(2)	16.062(3)	9.723(1)	99.33(1)	101.47(1)	96.75(1)	6153	3.7	5.7	325
47.55(3)	9.313(7)	31.97(2)		148.87(2)		2785	6.3	8.1	326
18.31(2)	12.15(1)	10.92(1)	106.98(5)	94.75(5)	108.98(5)	3759	4.8		327
14.80(1)	16.22(1)	16.56(1)		107.67(5)		2031	3.5		328
9.833(2)	19.430(5)	18.898(5)		93.18(2)		3811	2.3		329
19.92	25.96	15.82				2541	6.2		330
26.39(2)	7.72(1)	22.43(2)		124.8(5)		1624	7.1		331
26.24(L)	7.759(5)	22.35(1)		124.6(4)		2744	3.5		331
12.989	15.643	20.325	130.85	117.91	94.08	5436	4.4	5.8	332
15.671	11.996	15.085		109.55		1530	8.1		333
10,147(3)	10.081(4)	38. 627 (9)		102.27(3)		2337	4.7	7.2	334
9,913(2)	20.477 (3)	18.634(3)		95.42(1)		4819	3.9		335
9,83(2)	14.79(1)	11.36(2)	69.44(8)	66.48(8)	67. 57 (10)	4554	8.7		336
11.816(3)	15.331(4)	21.891(6)		113.22(1)		3365	5.2		337
15.745(5)	21.319(5)	10,935(5)			99.4(2)	1517	9.0		338
17.726(3)	9.748(2)	19.724(3)				1512	2.8		339
10.204(8)	11.602(8)	8.363(7)	106.04(8)	88.04(7)	108.98(7)	3435	3.8		340
18.968(3)	19.497(3)	21.363(3)				2321	10.3		341

References p. 156

.

144					
112	C43 ^H 32N4 ^P 2 ^P T	Pc[C3B2(CN)4](PPb3)2	Tri	pī	2
99	C ₄₃ H ₃₇ Cl ₂ IrN ₂ OP ₂ .CHCl ₂	IrCl ₂ (MeOC ₆ H ₃ N:NH) (PPh ₃) ₂ .CHCl ₃	Tri	pî	2
84	C43H42N102P2	NiEt (acac)(PPb3)2	Tri	РĪ	2
275	C44H32CU4F1208	Cu ₄ (0 ₂ CCF ₃) ₄ (C ₉ H ₈) ₄	M	P21/m	2
90	C44H37BrP2Pt	PtBr (CH:CHPh) (PPh3)2	H	P21/c	4
54	C44H40F6N3P2Rh	$trans-Rh[N:C(CF_3)_2]$ -	н	P2 1/n	4
111	C448440P2Pt. \$X	Pt (C ₆ H ₃ OEt) (PPh ₃) ₂ . 4x ^C	я	C2/c	8
301	C44H45B10P2Rb	[Rh(PPh ₃) ₂]PhC ₂ B ₁₀ B ₁₀	0	Pbca	8
a C9H8	= indene. ^b No refinement reported.	^C C ₆ H ₉ OEt = 1,4-n ² -1-ethoxycycloher molecule.	(yl; X = u	nknown solve	ent
129a	C46H30Fe206P2	Fe2(CO)5(Pb2PC2Ph)2	Ħ	P21/n	4
366a	C46H39Au2FeP2 ⁺ .BF4 ⁻	[FcAu ₂ (PPh ₃) ₂]BF4	М	P21/a	4
136	C48B38C12CoN2P2Pt	Pt[?2(2-C5H4N)2CoCL2](PPh3)2	м	P21/c	4

100	$C_{48}H_{40}CIIrN_2P_2 \cdot C_6H_1_4$	IrHC1(C6H4N:NPh)(PPh3)2.C6H14	M	F21/n	4
85	$C_{48}H_{47}As_{3}NN1^{+}C_{24}H_{20}B^{-}$	{N1Ph[N(CH2CH2AsPh2)3]}BPh4	Tri	PĪ	2
230	C49H40ClCuP2Ru	Ru(C2PhCuC1)(PPh3)2(C5H5)	M	F21/c	4
• •					
129	C ₅₀ H ₄₀ N ₂ O ₄ P ₂ Pt	Pt[<i>trans</i> -C ₂ H ₂ (C ₆ H ₄ NO ₂ - <i>p</i>) ₂](PPb ₃) ₂	Tri	ΡĪ	2
122	С51 ^{£442} 03Рd	Pd ₂ (dba) ₃	Tri	PÌ	2
122	С ₅₁ Н ₄₂ О3Pd.СНСl3	Pd ₂ (dba) 3. CHCl3	M	P21/c	4
122	C ₅₁ H ₄₂ O ₃ Pd.C ₆ H ₆	Pd ₂ (dba) 3. C ₆ H ₆	H	₽21/c	
a _{Simil}	lar disorder to CHCl ₃ solvate.				
1 . T	[10] M. Carallel and M. Carallel and M. Marketta and M. Karallel and M Karallel and M. Karallel and M. Karal Karallel and M. Karallel and M. Ka Karallel and M. Karallel an				- <u>-</u>

92	C52H5202P2Pt	$Pt(C_2C_6H_{10}OH)_2(PPh_3)_2$	M	P2 ₁ /n 2
178	C52H520, P2Rh2	$Rh_2(acac)_2(C_6H_8)(PPh_3)_2^{"}$	Tri	P1 2
				est fuit de l'Alexandre

								145	
11.422(5)	17.001(8)	10.475(5)	107.27(?)	110.72(2)	82.50(2)	4553	3.5		342
12.55(2)	12.38(2)	15.55(2)	103.07(7)	91.73(7)	116.28(7)	3699	3.5		343
9.297(2)	11.026(7)	13.188(6)	106.05(4)	110. 37 (3)	101.38(4)	1437	6.8	8.2	344
13.6(3)	20.30(5)	9.28(2)		100(1)	•		Ь		208
14.857(3)	16.339(5)	16.980(4)		118.30(1)	·	3123	3.1		345
20.228(4)	20.714(4)	9.836(2)		96.08(7)		2853	6.7		346
26.242(8)	12.161(3)	26.744(8)		115.76(2)		953	4.4		339
18.895	18.424	24.522				1950	7.5		347
12.032	19.155	17-644		91.39		3400	6.5	•	320
14.460(11)	30.539(27)	9.509(12)		92.61(15)		2082	11.2		348,349
9.392(1)	22.591(3)	23.729(3)		101.41					350
				н 1					
15.824(1)	25,903(1)	10.871(1)		88.227(2)		4615	11.5		351
18, 132(3)	13, 377(2)	13.162(2)	84,65(2)	73.80(2)	86.93(2)	3008	6.9		352
12.914	22.111	16.534		110.77		5895	8.2	7.4	153
12.955(3)	15.012(3)	11.169(3)	96.65(1)	97.93(1)	93.00(1)	2785	6.6		354
12.400(5)	15.149(5)	12.956(5)	115.01(5)	95.23(5)	97.30(5)	2911	6.8		355
13.536(3)	13.474(2)	25.415(4)		109.5(1)		3819	6.7		356
13.745(5)	23.589(5)	15.434(5)	•	66.04(3)			8.5	a	356
8.992	23-012	11.585		105.35		2898	5.2		357
17.866(4)	14. 993(4)	10.297(3)	99.22(2)	91.19(2)	108.26(2)	4473	4.1		229
References p	. 156						•		
· · ·									
at start									

146					
39	С ₅₂ н ₆₆ но ₂ 0 ₈ Р ₆	[Ko(CO3)(CO)(P#e2Pb)3]2			
а _{С6} н	8 = 1.4-n ² :2,2a,3,3a-n ⁴ -2,3-bis(methy	lene)butan-1,4-diyl. ^b No crystal data	reported	•	2 2 2 2 2
104	C54H45IrP3	IrH(C6H,PPh2)2 (PPh3)	M	P21/c	4
267	C54H46P3Ru ⁺ .BF4 ⁻	[RuH(PPh3)2(n ⁶ ~Ph)PPh2]BF4	H	P21/c	4
137	C55H30CuF10O3P2Re	ReCu(C2C6F5)2(CO)3(PPh3)2	Tri	PĪ	- 2
36	C55H.7IrOP3 ⁺ .F5Si ⁻	[IrH ₂ (CO) (PPh ₃) ₃]SIF ₅	Tri	P ī	2
119	C56H54NIP2.4C4H80	Ni(CHPh:CHPh)[P(C ₅ H ₄ Me-p) ₃] ₂ . 4C ₄ H ₈ O	0	Pccn	8
338	C59H45FeO14P3Pt2	$\operatorname{FePt}_2(\operatorname{CO})_5[\operatorname{P(OPh)}_3]_3$	Tri	PĪ	2
9	С ₆₀ н ₄₈ ко2х ₃ 0 ₆	M02 (CO)6 (NHPPh3) 3	н	P21/c	4
151	C ₅₀ H ₅₀ Br ₂ N1 ₂ P ₄ .8CHCl ₃	[N1Br(dppe)] ₂ C ₈ H ₁₂ .8CHCl ₃	M	A2/a	4
				•	
				•	
1 2 2					

132	C ₆₆ H ₅₀ F ₆ P ₄ Pd ₂	Pd2 (Ph2PC2CF3)2 (PPh3)2	H.	P2 1/c	4
182	С72Н84Nd4	[Nd (C5H4He) 3]4	м	P21/c	2
49	C ₇₃ H ₆₀ Cl _↓ P ₄ Ru ₂ S	Ru ₂ Cl ₄ (CS) (PPh ₃)4	0	Pn2 ₁ a	4
282	C74H66B2Cu2N2	[Cu(BH3CN)(PPh3)2]2	А.,	P21/n	4
25a	C84H60N6O2P4Rh2	[Rh(CO)(PPh3)2]2C4(CN)6	Tri	₽Ī	2
138	C ₉₄ H ₄₅ Ag ₂ F ₂₅ P ₃ Rh	$RhAg_2(C_2C_6F_5)_5(PPh_3)_3$	м	P21/n	4
373	C100H70Cu4Ir2P2	Ir ₂ Cu ₄ (C ₂ Ph) ₈ (PPh ₃) ₂	H	P21	2

								147		•
						5506	7.9	•	(b)	358
					1			•		
11.81(1)	22.81(2)	20.52(2)		128.1(5)	•	5384	4.0			359
20.755	12.784	18.609		109.06		4658	5.4			360
· · ·	•									
15.96	13.60	11.70	84.1	80.6	93.0	2683	7.7			361
16.69(3)	12.78(2)	16,65(2)	101.15(1)	95.66(1)	101.60(1)	3855	5.8			362
· · ·										
19.548(8)	26.145(12)	19.718(9)				2417	9.2			363
22.80(2)	12.31(1)	10.55(1)	105.2(1)	78-0(1)	88.6(1)	2353	6.2			364
										2014
19.605(9)	13.507(10)	24.045(11)		91.15(3)		2154	9.6	5.0		365
18,08(1)	22.18(1)	17.02(1)			110.2(1)	1248	9.3			271
•										
17,547(4)	13.088(4)	28.152(7)		102,14(2)		5465	9, 1			366
										2000
		0.000(0)		120 20(0)						
14.257(5)	20.85(1)	9.286(3)		120.28(8)		3463	4.0			367
21.53	23.40	14.20				1258	11.5			368
18.100(1)	27.407(5)	13.615(1)		104.43(1)		2921	6.0	7.2		369
16,483(2)	18.580(3)	12.813(2)	105.02(1)	103.83(1)	82.26(1)	7028	5.8			370
15,902(2)	21.497(3)	25.041(3)		102.00(1)		7820	6.8			371
14.86(2)	22.04(4)	13.62(2)		105.04(10)		4584	8.2			372

References p. 156

TABLE 4 Crystal structure data: Rydrides

148

Number	Formila	Structure	Crystal Type	Space Group	2
400	C42H43ConP3	CoH[N(CH2CH2PPh2)3]	Ħ	C2/c	8
401	C42H43NN1P3 - BF4	{N1N[N(CH2CH2PPb2)3]}BF4 ^a	R	Cc	4
399	C ₅₂ H ₅₁ 24Ba	ReH3(dppe)2	Ħ	P21/c	2
402	C55H47O2P3Ru	BuH (02CH) (FPh3) 3	Tri	Pl or Pl	2
			M	P21/c	4
403	C ₅₆ E ₊₉ O ₂ P ₃ Ru	RuH(O2CMe)(PPh3)3	м	P2 ₁ /c	4
			• * * * *		
288	H ₂₀ B ₂₀ FeS ₂ ² -2C ₄ H ₁₂ N ⁺	(Me,)2[Fe(B10H10S)2]	0	Ibam	4

^α Non-stoichiometric hydride; mixture of trigonal bipyramidal cation (N,H axial) with trigonal pyramidal cation (N axial); cell data refer to approximately NiH_{0.5}.

	a	Ъ	Unit cel c	l constants Q	£	^н , Ү	Data	R	R Notes	Reference
	24.278	11.192	28.027		107.99		2297	5.6		373
`	16.739(2)	12.566(1)	18.064(2)	:	90-41(2)	· ·	1440	7.0	9.0	374
	16.09(2)	10.27(1)	19.11(2)	.	128.0(1)		656	7.5	•	375
	12.633	12.646	18.468	78.77	103.90	68.66			ł	376
	20.272	14.260	20.944		122.77		1357	13.6	J	510
	20.68(4)	9.636(20)	26.59(4)		119.58(8)		4080	8.9		377
	15.585(5)	12.324(4)	14.806(6)				962	4.2	4.4	378

References p. 156

ş

149

TABLE 5 Crystal structure data: Nitrosyls

Number	Formula	Structure	Crystal type	Space Group	2
407	C4FeN 50 ²⁻ . 2Na ⁺	Na2[Pe(NO)(CN)4]	ð	Pns21	4
411	C8H18Fe4N604S2	Fe4(NO)452(NBu ^t)2	Ħ	P21/m	2
420	С12H18CoN303	Co(NO)(ea)	٥	P212121	4
404	C15H22C1MnN2O6P2	Mn(NO)2C1[PPh(OMe)2]2	Tri.	PĪ	4
			н	C2/c	8
422	C16H36C04N804	Co4 (NO)4 (NBu ^t)4	Tet	P41212	4
408	C ₁₆ H ₃₆ Fe ₂ N ₅ OSi, ⁺ , F ₆ F ⁻ , C ₃ H ₆ O	[{Fe[S(CH ₂) ₂ NMe(CH ₂) ₂ NMe(CH ₂) ₂ S]} ₂ - (NO)]FF ₅₋ Me ₂ CO	0	Ата2	4
421	C22H22CoN303	Co (NO) (eb)	0	P212121	4
419 .	C ₂₆ H ₂₄ CoIN ₂ O ₃ P ₂	Co(NO) ₂ I[Ph ₂ P(CH ₂) ₂ P(0)Ph ₂]	м	C2/c	8
417	C ₂₆ H ₂₆ Cl ₃ NOP ₂ Ru	Ru (NO) CL ₃ (PMePh ₂)2	M	P21/c	4
418	C ₃₆ H ₃₀ ClNO ₅ P ₂ RuS	Ru (NO) Cl (SO4) (PPh3)2	0	Pbcn	4
-412	C36H30FeN202F2	Fe(NO)2(PPh3)2	M	P2/c	2
416	C ₃₆ H ₃₀ N ₂ O ₂ P ₂ Ru. 3C ₆ H ₆	Ru(NO) ₂ (PPh ₃) ₂ . ¹ / ₂ C ₆ H ₆	м	P21/n	4
406	C ₃₉ H ₃₉ Cl ₂ NORe	Re(NO)Cl2(PMePh2)3			
409	C48H34FeN70.CHCl3	Fe(NO)(NMeIm)(TPP).CHCl ₃	0	P212121	4
405	С ₅₀ н ₄₁ млы ₈ 0.СНС1 ₃	Mn(NO)(Mpip)(TPP).CECl ₃	o	P212121	4
423	C54H46IrNOP3 ⁺ . C104 ⁻	[Ir(NO)H(PPh3)3]Cl04	, o	Pbca	8
415	H ₁₃ N ₅ 0 ₂ Ru ²⁺ .2C1 ⁻	trans-[Ru(NO) (OH) (NH3) 4]C12	M	C2/m	4
414	H15N60Ru ³⁺ . 3C1 . H2C	[Bu (NO) (NH ₃) ₅]Cl ₃ ,H ₂ O	0	Pn2 ₁ a	4
413	C15NOBu ²⁻ - 2C5H ₆ N ⁺	(pyH) ₂ [Ru(NO)CL ₅]	o	Puma	8
424	C16N202Pt2 . C8H20N ⁺	NEL4[PL2(NO)2C16]	M	F21/c .	8
424a	C18N202Pt2 ²⁻ .2C9H8N ⁺	(quinH)[Pt2(NO)2C18]	Tri	PĨ	2
410	FeyNyOySy	Fe4 (NO) 454	H	P21/n	4

a Form A, from EtOH/CHCl3. d poinvestigation. Spa

HCl₃. ^b Form B, from C₆H₆. ^c No crystal data, diagram only. ^e Space group: Puma or Pua2₁, best R for former; pseudoperiodicity.

÷

a	b	Unit ce c	ll constants a	ß	¥	Data	R	Rw	Notes	Reference
33.92(2)	7.604(2)	9_ 832 (2)				1796	10.2			379
11.140(2)	11.013(2)	7.921(1)		91.82(1)		1194	3.3	4.6		380
17. 308(10)	12.725(7)	6.316(4)		•		1232	5.6	7.0		381
15.727(5)	15.198(5)	9.405(5)	90.97(1)	89.04(1)	97.21(1)	3711	6.5		⊈ ⊿	
25.863(5)	11.863(5)	14.563(5)		90.96(1)		2265	5.8		Ъ	302
11.725(7)		20.606(5)				861	4.2	4.6		383
24.18(2)	15.670(7)	8.011(4)				1345	3.2	3.7		384
22.188(10)	11.935(5)	3.708(2)				1130	7.0	7.9		381
29.139(15)	9.002(5)	24.096(13)		117.67(2)		1499	7.43			385
12.308(4)	16.579(6)	14.700(4)		114.82(2)		3120	4.4	5.1		386
19.65(1)	10.79(1)	15.73(1)				1192	5.4			387
11.70(1)	8.20(1)	17.24(2)		106.60(8)		1198	5.2	6.4		388
17.031(2)	18.792(2)	10.800(1)		97.03(1)		2985	4.3			384
									e	390
17.733(13)	25.339(22)	9.752(10)				4148	5.2	7.4		391
17.561(6)	25.580(3)	10.175(6)				3440	5.3	7.8		391
23.245(2)	21.308(2)	19.441(5)				2654	8.9 .1	11.2		392
11.422(3)	7.365(2)	11.157(2)		109.09(2)		2398	3.1		đ	393
11.864(7)	6-878(5)	14.192 (9)				971	4.7		đ	393
7.21	32.1	14.77				∿800 2	2		г	394
20.704(2)	10.390(1)	14.408(2)		106.994(8)		1688 -	7			395
8.103(5)	10.687(7)	8.772(6)	113.u4(5)	93.33(3)	77.21(5)	1626 1	0.1			396
12.350(3)	9_627(7)	10.407(4)		103.66(3)		1376	3.2	4.2		380

• References p. 150

•

TABLE 6 Crystal structure data: Dinitrogen, aryldiazo, aryldiimine and related complexes.

Nurber	Formula	Structure	Crystal type	Space Z Group
425	C33H47Cl5MON2OP4Re.CH40.ClH	(Me2FhP), CIREN2MoCl, (OMe). MeOH. HCl	Ĥ	P21/c 4
428	C14H35ClFN2P2Pt	ŧrans-Pt (EN2C6H4F-p)CL(PEt3)2	Tri	PĪ 2
427	C ₂₂ H ₃₁ Cl ₂ N ₃ P ₂ Re ⁺ .Br ⁻	[Re(HN2Ph)Cl2(NH3)(PMe2Ph)2]Br	1997 - 1997 - 1997 1997 - 1997 - 1997 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1	P21/n
426	C ₅₂ H ₅₀ ClN ₂ P ₂ W ⁺ .C ₂₄ H ₂₀ B ⁻	[W(N ₂ H ₂)Cl(dppe) ₂]BPb ₄	M	P21/c 4
429	C ₅ H ₂ 3ClN ₅ Re ²⁺ .2C10 ₄	[Re(NMe)Cl(MeNH2)4](Cl04)2	0	Pnam 4
142	C5LEacNaOaPaPda	(Pd(PbNO) (PBn ^t)]-		P2.10 4

152.

a	Vait c	ell constants a	ß	Ŷ	Data	R	R Notes	Reference
14.918(1) 11.176(2)	28.162(3)		92.6(1)		3589	5.9		397
9.167(2) 16.983(3)	8.947(2)	91.46(1)	96.34(1)	77.04(1)	4292	5.2	6.6	398
9.561(1) 31.802(3)	11.004(1)		122.4(7)		2197	5.4		399

97.8

9.561(1)	31.802(3)	11.004(1)	122.4(7)	2197	5.4
12.472(1)	19.658(2)	27.056(3)	92.53(1)	- 5599	6.4
		· .			
16.908(4)	8.641(2)	12.759(5)		1066	4.1

References p. 156

14.64

26.75

15.33

a 14.918(1) 153

4645

7.9

400

401

TABLE 7 Crystal structure data: Binary metal-tertiary phosphine complexes.

- 1		÷		11111	-		÷					 	2.84			
	1.1		÷.			· 2.	1.0		197	÷ 1.	19 P.	 2.2		20	2	1.
				12		1.4.2	. *	· ·	1.1	. ¥.	· · · ·	 	· ''		·	

. Numbe		Formula :		Struc	iture	Crystal type	Space Z Group
. 430	C ₂₈ H ₄₆ P ₂ Pd		Pd(Pl	Bu ₂ Ph) ₂		¥	Cc 4
431	C ₃₆ H ₆₆ P ₂ Pd		Pd (PC	Cy3)2		N	C2/c 4
432	C54H45Au ⁺ . B9F	I ₁₂ 5	[Au (I	PPh ₃) ₃]B ₉ H ₁₂ S		Tri	PĪ

a.	э	Unit cel C	l constants Q	ß	Ŷ	Data	R	R _w Notes	Reference
10.070(2)	45.377(7)	8.075(1)		129.84(2)		2470	6.2		403
45.372	12.593	10.058				1264	10		404
16.858	9.616	22. 382		92.11		2181	6.6		404
13.036(12)	19.635(32)	11.180(8)	103.60(16)	72.10(9)	94.76(15)	3094	7.7	8.9	405

156	
REFEF	ENČES
	Without a Characterian Mathada at C. & Ci-
.	Molecular Structures by Dijjaction Methods, ed. G.A. Sim and
-	L.E. Sullon, Gredical Society (London), vol. 1 (1974).
2	L.J. Manojlovic-Mulr and K.W. Mulr, Inorg. Chim. Acta, 10 (1974) 47.
3	F.A. Cotton and B.A. Frenz, Tetrahedron, 30 (1974) 1587.
4	B.K. Teo, M.B. Hall, R.F. Fenske and L.F. Dahl, J.Organometallic
e e e e estas	Chem., 70 (1974) 413.
5	P. Coppens, Acta Cryst., B30 (1974) 255.
6	S.C. Abrahams, Acta Cryst., B30 (1974) 261.
7	JF. Berar and G. Calvarin, Compt. Rend., 277C (1973) 1005.
8	J.H. Enemark and R.D. Feltham, Coord. Chem. Rev., 13 (1974) 339.
9	M.A. Porai-Koshits, V.S. Sergienko and T.S. Khodashova,
	Zh.neorg.Khim., 18 (1973) 3290.
10	E.M. Shustorovich, M.A. Porai-Koshits, B. Khodashova and
	Y.A. Buslaev, Zh. strukt. Khim., 14 (1973) 706.
11	T.E. Paxson, M.F. Hawthorne, L.D. Brown and W.N. Lipscomb,
2 ° 1	Inorg.Chem., 13 (1974) 2772.
12	R.D. Dobrott and W.N. Lipscomb, J. Chem. Phys., 37 (1962) 1779;
	A. Kaczmarczyk, R.D. Dobrott and W.N. Lipscomb, Proc. Nat. Acad.
- 1	Sci. U.S., 48 (1962) 729.
13	A. Haaland, J. Lusztyk, D.P. Novak, J. Brunvoll and K. Starowieyski,
	J.C.S. Chem.Comm., (1974) 54.
14	B. Beagley and D.G. Schmidling, J.Mol.Struct., 22 (1974) 466.
15	E. Cetinkaya, A.W. Johnson, M.F. Lappert, G.M. McLaughlin and
	K.W. Muir, J.C.S. Dalton, (1974) 1236.
16	J.D. Wilkins and M.G.B. Drew, J. Organometallic Chem., 69 (1974) 111.
17	J.C. Calabrese, M.B. Fischer, D.F. Gaines and J.W. Lott,
	J.Amer.Chem.Soc., 96 (1974) 6318.

	157
18	Y. Chow and D. Britton, Acta Cryst., B30 (1974) 1117.
-19	0. Hollander, W.R. Clayton and S.G. Shore, J.C.S. Chem. Comm., (1974) 604.
20	G.C. van den Berg, A. Oskram and K. Olie, J.Organometallic Chem.,
	80 (1974) 363.
21	D.P. Schussler, W.R. Robinson and W.F. Edgell, Inorg. Chem.,
	13 (1974) 153.
22	R. Spagna, G. Ughetto and L. Zambonelli, Acta Cryst., B29 (1973) 1151.
23	H.P. Calhoun and J. Trotter, J.C.S. Dalton, (1974) 377.
24	S.A. Goldfield and K.N. Raymond, Inorg. Chem., 13 (1974) 770.
25	A.W. Cordes, R.D. Joyner, R.D. Shores and E.D. Dill, Inorg. Chem.,
	13 (1974) 132.
26	G. Huttner, H. Lorenz and W. Gartzke, Angew.Cham., 86 (1974) 667;
	Angew.Chem.Internat.Edit., 13 (1974) 609.
27	G.W. Adamson, J.J. Daly and D. Forster, J.Organometallic Chem.,
	71 (1974) C17.
28	K.P. Callahan, C.E. Strouse, A.L. Sims and M.F. Hawthorne,
	Inorg. Chem., 13 (1974) 1393.
29	J. Krausse and G. Marx, J.Organometallic Chem., 65 (1974) 215.
30	R.J. Sundberg, R.F. Bryan, I.F. Taylor and H. Taube,
	J.Amer.Chem.Soc., 96 (1974) 381.
31	R.D. Wilson and R. Bau, J. Amer. Chem. Soc., 96 (1974) 7601.
32	D.Y. Jeter and E.B. Fleischer, J. Coord. Chem., 4 (1974) 107.
33	C. Barbeau and R.J. Dubey, Canad. J. Chem., 51 (1973) 3684.
34	E.W. Abel, R.J. Rowley, R. Mason and K.M. Thomas, J.C.S. Chem.Comm.,
	(1974) 73.
35	F.A. Cotton, G.A. Rusholme and A. Shaver, J.Coord.Chem., 3 (1973) 99.
36	K.P. Cailahan, F.Y. Lo, C.E. Strouse, A.L. Sims and M.F. Hawthorne,
	Inorg.Chem., 13 (1974) 2842.
37	M.R. Churchill and B.G. DeBoer, Inorg. Chem., 13 (1974) 1411.

158	
38	J.W. Lott and D.F. Gaines, Inorg. Chem., 13 (1974) 2261.
39	M.R. Churchill, J.J. Hackbarth, A. Davison, D.D. Traficante and
	S.S. Wreford, J.Amer. Chem. Soc., 96 (1974) 4041.
40	M.R. Churchill and S.WY. Chang, Inorg. Chem., 13 (1974) 2413.
41	F.A. Cotton and J.M. Troup, J.Amer.Chem.Soc., 96 (1974) 3438.
42	M. Cannas, G. Carta, G. Marongiu and E.F. Trogu, Acta Cryst.,
	B30 (1974) 2252.
43	G.D. Andreeti, G. Bocelli and P. Sgarabotto, Cryst. Struct. Comm.,
	3 (1974) 103.
44	G. Nardin, L. Randaccio and E. Zangrando, J.Organometallic Chem.,
	74 (1974) C23.
45	F.A. Cotton, J.M. Troup, T.R. Webb, D.H. Williamson and G. Wilkinson,
··· ·.	J.Amer.Chem.Soc., 96 (1974) 3824.
46	M. Green, J.L. Spencer, F.G.A. Stone and A.J. Welch, J.C.S. Chem. Comm.,
	(1974) 794.
47	H.B. Chin, M.B. Smith, R.D. Wilson and R. Bau, J.Amer.Chem.Soc.,
· ·	96 (1974) 5285.
48	J.P. Olsen, T.F. Koetzle, S.W. Kirtley, M. Andrews, D.L. Tipton
	and R. Bau, J. Amer. Chem. Soc., 96 (1974) 6621.
49	M.J. Barrow, G.A. Sim, R.C. Dobbie and P.R. Mason, J. Organometallic Chem.,
-	69 (1974) C4.
50	A.N. Nesmeyanov, M.I. Rybinskaya, L.V. Rybin, A.V. Arutyunyan,
	L.G. Kuz'mina and Y.T. Struchkov, J. Organometallic Chem.,
	73 (1974) 365.
51	D. Guiderow, Acta Cryst., B30 (1974) 2798.
52	D.L. McFadden and A.T. McPhail, J.C.S. Dalton, (1974) 363.
53	G. Evrard, J.A. Ricci, I. Bernal, W.J. Evans, D.F. Dustin and
	M.F. Hawthorne, J.C.S. Chem. Comm., (1974) 234.
54	F.A. Cotton and J.M. Troup, J.C.S. Dalton, (1974) 800.

	159
55	G. Huttner, W. Gartzke and K. Allinger, Angew. Chem., 86 (1974) 860;
	Angew.Chem.Internat.Edit., 13 (1974) 822.
56	G.W. Hunt, T.C. Lee and E.L. Amma, Inorg. Nuclear Chem. Letters,
	10 (1974) 909.
57	E.A. Hall Griffith and E.L. Amma, J.Amer.Chem.Soc., 96 (1974) 743.
58	Z. Kaluski, A.I. Gusev and Y.T. Struchkov, Bull Acad. polon. Sci,
	Ser.Sci.chim., 20 (1972) 875.
59	M. Cannas, G. Carta, D. DeFilippo, G. Marongiu and E.F. Trogu,
	Inorg.Chim.Acta, 10 (1974) 145.
60	K. Prout, T.S. Cameron, R.A. Forder, S.R. Critchley, B. Denton and
	G.V. Rees, Acta Cryst., B30 (1974) 2290.
61	M. van den Akker, R. Olthof, F van Bolbuis and F. Jelinek,
	Rec. Trav. chim., 91 (1972) 75.
62	J.L. Calderon, S. Fontana, E. Frauendorfer and V.W. Day,
	J.Organometallic Chem., 64 (1974) ClO.
63	J.L. Calderon, S. Fontana, E. Frauendorfer, V.W. Day and S.D.A. Iske,
	J.Orgunometallic Chem., 64 (1974) C16.
64	Y.S. Sohn, A.W. Schlueter, D.N. Hendrickson and H.B. Gray,
	Inorg.Chem., 13 (1974) 301.
65	J.L. Petersen and L.F. Dahl, J.Amer.Chem.Soc., 96 (1974) 2248.
66	J. Bordner and D.W. Wertz, Inorg. Chem., 13 (1974) 1639.
67	G. Del Pietro, G. Perego and M. Cesari, Cryst. Struct. Comm., 3 (1974) 15.
68	P.S. Elmes, B.M. Gatehouse and B.O. West, J.Organometallic Chem.,
	82 (1974) 235.
69	V.W. Day, B.R. Stults, K.J. Reimer and A. Shaver, J.Amer.Chem.Soc.,
	96 (1974) 4008.
70	P. Dodman and T.A. Hamor, J.C.S. Dalton, (1974) 1010.
71	J.P. Yesinowski and D. Bailey, J. Organometall's Chem., 65 (1974) C27.
72	N.I. Kirillova, A.I. Gusev, A.A. Pasynski and Y.T. Struchkov,
	Zh.strukt.Khim., 14 (1973) 868.
73	A. Mercer and J. Trotter, Canad. J. Chem., 52 (1974) 3331.
----	---
74	P.E. Rush and J.D. Oliver, J.C.S. Cham. Comm., (1974) 996.
75	E.O. Greaves, G.R. Knox, P.L. Pauson, S. Toma, G.A. Sim and
	D.I. Woodhouse, J.C.S. Chem. Comm., (1974) 257.
76	M.K. Cooper, R.S. Nyholm, P.W. Carreck and M. McPartlin,
	J.C.S. Chem.Comm., (1974) 343.
77	F. Dawans, J. Dcwailly, J. Meunier-Piret and P. Piret,
	J.Organometallic Chem., 76 (1974) 53.
78	N.A. Bailey, W.G. Kita, J.A. McCleverty, A.J. Murray, B.E. Mann
	and N.W.J. Walker, J.C.S. Chem.Comm., (1974) 592.
79	P. Salvadori, R. Lazzaroni and S. Merlino, J.C.S. Chem. Comm, (1974) 4
80	V.L. Goedkin and SM. Peng, J.C.S. Chem. Comm., (1974) 914.
81	H. Einspahr and J. Donohue, Inorg. Chem., 13 (1974) 1839.
82	R. Guilard and Y. Dusausoy, J. Organometallic Chem., 77 (1974) 393.
83	G. le Borgne and D. Grandjean, Acta Cryst., B29 (1973) 1040.
84	F.A. Cotton and J.M. Troup, J. Organometallic Chem., 76 (1974) 81.
85	A.HJ. Wang, I.C. Paul and R. Aumann, J. Organometallic Chem.,
	69 (1974) 301.
86	T.H. Whitesides, R.W. Slaven and J.C. Calabrese, Inorg. Chem.,
	13 (1974) 1895.
87	S.J. Anderson, D.S. Brown and A.H. Norbury, J.C.S. Chem. Comm.,
	(1974) 996.
88	B. Morosin, Acta Cryst., B30 (1974) 838.
89	W.G. Kita, J.A. McCleverty, B.E. Mann, D. Seddon, G.A. Sim and
<	D.I. Woodhouse, J.C.S. Chem. Comm., (1974) 132.
90	No reference.
91	E.L. Hoel, C.E. Strouse and M.F. Hawthorne, Inorg. Chem., 13 (1974) 138
92	K.P. Callahan, C.E. Strouse, A.L. Sims and M.F. Hawthorne,
	Thora, Chem., 13 (1974) 1397.

	161
93	M.R. Churchill and B.G. DeBoer, J. Amer. Chem. Soc. 96 (1974) 6310.
9/	M.O. Viscober I.C. Huffmon and U.F. Streib Inona Cham 13 (1974) 792
95	I.F. Malone, J.C.S. Dalton, (1974) 1699.
96	V. L. Goedken and S. M. Peng, J. Amer. Chem. Soc. 96 (1974) 7826.
97	C Person C del Distre and M Connel Court Struct Corry 3 (1974) 721
09	D I Proven C Vettern D I Debaste and W U many Chem Box 107
50	(1074) 2704
90	(17/4) 5/00.
100	N & Albano & Ciani and & Martinenco I (Magnometallia Chem
100	7. (1074) 245
101	
101	F.A. Cotton and J.M. Troup, J.Amer. Chem. Soc., 96 (1974) 4155.
102	J.C. Calabrese, L.F. Dahi, A. Cavalieri, P. Chini, G. Longoni and
	S. Martinengo, J. Amer. Chem. Soc., 96 (1974) 2616.
103	J.C. Calabrese, L.F. Dahl, P. Chini, G. Longoni and S. Martinengo,
	J.Amer.Chem.Soc., 96 (1974) 2614.
104	M. McPartlin, G.B. Robertson, G.H. Barnett and M.K. Cooper,
-	J.C.S. Chem. Comm., (1974) 305.
105	J.L. Davidson, M. Green, D.W.A. Sharp, F.G.A. Stone and A.J. Welch,
•	J.C.S. Chem. Comm., (1974) 706.
106	A.D. Redhouse, J.C.S. Dalton, (1974) 1106.
107	P.D. Brotherton, J.M. Epstein, A.H. White and S.B. Wild,
	Austral.J.Chem., 27 (1974) 2667.
108	C.P. Casey and C.A. Bunnell, J.C.S. Chem.Comm., (1974) 733.
109	F.A. Cotton and D.L. Hunter, Inorg. Chem., 13 (1974) 2044.
110	0.S. Mills and J.P. Nice, J. Organometallic Chem., 10 (1967) 337.
111	H. Vahrenkamp, Chem. Ber., 107 (1974) 3867.
112	D.I. Woodhouse, G.A. Sim and J.G. Sime, J.C.S. Dalton, (1974) 1331.
113	P.D. Brotherton, D. Wege, A.H. White and E.N. Maslen, J.C.S. Dalton,
	(1974) 1876.

162 114 F.A. Cotton and J.M. Troup, J. Organometallic Chem., 77 (1974) 369. 115 C.H. Saldarriaga-Molina, A. Clearfield and I. Bernal, Inorg. Chem., 13 (1974) 2880. 116 C.H. Saldarriaga-Molina, A. Clearfield and I. Bernal, J. Organometallic Chem., 80 (1974) 79. 117 D.G. VanDerveer and R. Eisenberg, J. Amer. Chem. Soc., 96 (1974) 4994. M. Calligaris, J.C.S. Dalton, (1974) 1628. 118 D.F. Gaines, J.W. Lott and J.C. Calabrese, Inorg. Chem., 13 (1974) 2419. 119 120 E.W. Abel, C.A. Burton, M.R. Churchill and K.-K.G. Lin, J.C.S. Chem. Comm., (1974) 917. 121 R.E. Davis, B.L. Barnett, R.G. Amiet, W. Mark, J.S. McKennis and R. Pettit, J.Amer.Chem.Soc., 96 (1974) 7108. 122 E.A.H. Griffith and E.L. Anma, J. Amer. Chem. Soc., 96 (1974) 5407. 123 G. Huttner and W. Gartzke, Chem. Bar., 107 (1974) 3786. 124 G.A. Sim, J.G. Sime, D.I. Woodhouse and G.R. Knox, J. Organometallic Cham., 74 (1974) C7. 125 L.A. Paquette, J.M. Photis, J. Fayos and J. Clardy, J. Amer. Chem. Soc., 96 (1974) 1217. 126 B.W. Davis and N.C. Payne, Inorg. Chem., 13 (1974) 1843. 127 F. van Meurs and H. van Koningsveld, J. Organometallic Chem., 78 (1974) 229. 128 E. Surcouf and P. Herpin, Compt. rend., 278C (1974) 507. 129 M.G.B. Drew and J.D. Wilkins, J. Organometallic Chem., 69 (1974) 271. 130 R.D. Adams, F.A. Cotton and G.A. Rusholme, J. Coord. Chem., 1 (1971) 275. L.J. Guggenberger, P. Meakin and F.N. Tebbe, J.Amer. Chem. Soc., 131 96 (1974) 5420. G. Thiele, G. Liehr and E. Lindner, Chem. Ber., 107 (1974) 442. 132 133 L. Randaccio and E. Zangrando, Cryst. Struct. Comm., 3 (1974) 565. P. Meakin, L.J. Guggenberger, F.N. Tebbe and J.P. Jesson, 134 -Inorg. Chem., 13 (1974) 1025.

V.G. Albano, G. Ciani and P. Chini, J.C.S. Dalton, (1974) 432. 135 R. Bau, S.W. Kirtley, T.N. Sorrell and S. Winarko, J. Amer. Chem. Soc., 136 96 (1974) 988. 137 P.H. Bird and A.R. Fraser, J. Organometallic Chem., 73 (1974) 103. F.S. Stephens, J.C.S. Dalton, (1974) 13. :138 139 R. Goddard, J. Howard and P. Woodward, J.C.S. Dalton, (1974) 2025. 140 H.E. Sasse and M.L. Ziegler, Z. anorg. Chem., 402 (1973) 129. 141 I.L.C. Campbell and F.S. Stephens, J.C.S. Dalton, (1974) 923. 142 R.C. Elder, Inorg. Chem., 13 (1974) 1037. R.C. Elder, F.A. Cotton and R.A. Schunn, J.Amer. Chem. Soc., 143 89 (1967) 3645. E. Dubler, M. Textor, H.-R. Oswald and A. Salzer, Angew. Chem., 144 86 (1974) 125; Angew. Chem. Internat. Edit., 13 (1974) 135. R.A. Forder and K. Prout, Acta Cryst., B30 (1974) 491. 145 146 R.E. Davis, T.A. Dodds, T.-H. Hseu, J.C. Wagnon, T. Devon, J. Tancrede, J.S. McKennis and R. Pettit, J.Amer.Chem.Soc., 96 (1974) 7562. R.D. Adams, M.D. Brice and F.A. Cotton, Inorg. Chem., 13 (1974) 1080. 147 148 F.S. Stephens, J.C.S. Dalton, (1974) 1067. L.R. Nassimbeni and M.M. Thackeray, Acta Cryst., B30 (1974) 1072. 149 R.M. Kirchner and J.A. Ibers, Inorg. Chem., 13 (1974) 1667. 150 P.S. Elmes, B.M. Gatehouse, D.J. Lloyd and B.O. West, 151 J.C.S. Chem.Comm., (1974) 953. 152 B. Cetinkaya, M.F. Lappert, G.M. McLaughlin and K. Turner, J.C.S. Dalton, (1974) 1591. J.A.K. Howard, S.A.R. Knox, V. Riera, F.G.A. Stone and P. Woodward, 153 J.C.S. Chem.Comm., (1974) 452. R.D. Adams, D.M. Collins and F.A. Cotton, J.Amer. Chem. Soc., 154

96 (1974) 749.

163

164	
155	R.D. Adams, D.M. Collins and F.A. Cotton, Inorg. Chem., 13 (1974) 1086.
156	J. St. Denis, W. Butler, M.D. Glick and J.P. Oliver, J. Amer. Chem. Soc.,
	96 (1974) 5427.
157	F.W.B. Einstein and A.C. MacGregor, J.C.S. Dalton, (1974) 783.
158	R. St.L. Bruce, M.K. Cooper, H.C. Freeman and B.C. McGrath,
	Inorg.Chem., 13 (1974) 1032.
159	W. Clegg and P.J. Wheatley, J.C.S. Dalton, (1974) 424.
160	F.A. Cotton and B.A. Frenz, Inorg. Chem., 13 (1974) 253.
161	A. Irmirzi, J.Organometallic Chem., 76 (1974) 65.
162	F.A. Cotton and J.M. Troup, J.Amer.Chem.Soc., 96 (1974) 5070.
163	D.F. Starks, T.C. Parsons, A. Streitwieser and N. Edelstein,
-	Inorg.Chem., 13 (1974) 1307.
164	J.L. Petersen, L.F. Dahl and J.M. Will'iams, J.Amer.Chem.Soc.,
	96 (1974) 6610.
165	W.R. Cullen, L. Mihichuk, F.W.B. Einstein and J.S. Field,
	J.Organometallic Chem., 73 (1974) C53.
166	M.J. Webb, M.J. Bennett, L.Y.Y. Chan and W.A.G. Graham,
	J.Amer.Chem.Soc., 96 (1974) 5931.
1 <u>6</u> 7	M. Matsumoto, K. Nakatsu, K. Tani, A. Nakamura and S. Otsuka,
	J.Amer.Chem.Soc., 96 (1974) 6777.
168	G. Huttner and V. Bejenke, Chem. Ber., 107 (1974) 156.
169	F. Dahan, C. Agami, J. Levisalles and F. Rose-Munch, J.C.S. Chem. Comm.,
	(1974) 505.
170	F.A. Cotton and T.R. Webb, Inorg. Chim. Acta., 10 (1974) 127.
171	F. Sartori, L. Leoni, R. Lazzaroni and P. Salvadori, J.C.S. Chem.Comm.,
	(1974) 322.
172	S.R. Fletcher and A.C. Skapski, J.C.S. Dalton, (1974) 486.
173	No reference.

	165
374	M. Green, J.L. Spencer, F.G.A. Stone and A.J. Welch, J.C.S. Chem. Comm.
	(1974) 571.
175	M. Green, J. Howard, J.L. Spencer and F.G.A. Stone, J.C.S. Chem. Comm.,
	(1974) 153.
176	F.A. Cotton and J.M. Troup, J.Amer. Chem. Soc., 96 (1974) 1233.
177	D. Bright and O.S. Mills, J.C.S. Dalton, (1974) 219.
178	R.M. Kirchner and J.A. Ibers, J. Organometallic Chem., 82 (1974) 243.
179	R.M. Moriarty, KN. Chen, M.R. Churchill and S.WY. Chang,
	J.Amer.Chem.Soc., 96 (1974) 3661.
180	P.B. Hitchcock, M.F. Lappert, G.M. McLaughlin and A.J. Oliver,
	J.C.S. Dalton, (1974) 68.
181	A.C. Jarvis, R.D.W. Kemmitt, B.Y. Kimura, D.R. Russell and P.A. Tucker,
	J.C.S. Chem.Comm., (1974) 797.
182	M.J. Barrow and O.S. Mills, Acta Cryst., B30 (1974) 1635.
183	M.R. Churchill and J. Wormald, J.C.S. Dalton, (1974) 2410.
184	A.C. Jarvis, R.D.W. Kemmitt, B.Y. Kimura, D.R. Russell and
	P.A. Tucker, J. Organometallic Chem., 66 (1974) C53.
185	R.D. Adams, F.A. Cotton and J.M. Troup, Inorg. Chem., 13 (1974) 257.
186	T.S. Cameron and J.F. Maguire, Acta Cryst., B30 (1974) 1357.
187	V.T. Kalinnikov, A.A. Pasynskii, G.M. Larin, V.M. Novotortsev,
	Y.T. Struchkov, A.I. Gusev and N.I. Kirillova, J.Organometallic
	Chem., 74 (1974) 91.
188	N.I. Kirillova, A.I. Gusev, A.A. Pasynskii and Y.T. Struchkov,
	Zh.strukt.Khim., 14 (1973) 1075.
189	K. Frout and G.V. Rees, Acta Cryst., B30 (1974) 2251.
190	R.D. Adams, F.A. Cotton and B.A. Frenz, J.Organometallic Chem.,
	73 (1974) 93.
191	M.R. Churchill, B.G. DeBoer and J.J. Hackbarth, Inorg. Chem., 13 (1974) 2098
192	K. Prout and G.V. Rees, Acta Cryst. B30 (1974) 2249.

193	L.F. Dahl, P.D. Frisch and G.R. Gust, in P.C.H. Mitchell, ed., Chemis
	and Uses of Molybdenum, Proc. 1st Internat.Conf., Reading,
	September 1973, p. 134.
194	B.L. Barnett and C. Krüger, J.Organometallic Chem., 77 (1974) 407.
195	HJ. Haupt and F. Neumann, J. Organometallic Chem., 74 (1974) 185.
196	H. Preut and HJ. Haupt, Chem. Ber., 107 (1974) 2860.
197	G. Thiele, G. Liehr and E. Linduer, J. Organometallic Chem.,
· · ·	70 (1974) 427.
198	L. Manojlovic-Muir, K.W. Muir and R. Walker, J. Organometallic Chem.,
	66 (1974) C21.
199	V.G. Albano, A. Araneo, P.L. Bellon, G. Ciani and M. Manassero,
	J. Organometallic Chem., 67 (1974) 413.
200	JM. Manoli, A.P. Saughan and J.A. Ibers, J.Organometallic Chem.,
	72 (1974) 247.
201	F.A. Cotton and V.W. Day, J.C.S. Chem. Comm., (1974) 415.
202	N. Kamijyo and T. Watanabe, Bull.Chem.Soc. Japan, 47 (1974) 373.
203	J.S. Field and P.J. Wheatley, J.C.S. Dalton, (1974) 702.
204	J.D. Cotton, P.J. Davidson, D.E. Goldberg, M.F. Lappert and K.M. Thom
· ·	J.C.S. Chem.Comm., (1974) 893.
205	K.D. Bos, E.J. Bulten, J.G. Noltes and A.L. Spek, J.Organometallic Chu
	71 (1974) C52.
206	W. Clegg and P.J. Wheatley, J.C.S. Dalton, (1974) 511.
207	E.W. Abel, C.A. Burton, M.R. Churchill and KK.G. Lin,
	J.C.S. Chem.Comm., (1974) 268.
208	P.F. Rodesiler and E.L. Amma, J.C.S. Chem. Comm., (1974) 599.
209	J.L. Flippen, Inorg. Chem., 13 (1974) 1054.
210	G. Gilli, M. Sacerdoti and P. Domiano, Acta Cryst., B30 (1974) 1485.
211	C. Lecomte, Y. Dusausoy, J. Protas and C. Moise, Acta Cryst., B29
·	(1973) 1127.

- 212 J.F. Clarke and M.G.B. Drew, Acta Cryst., B30 (1974) 2267.
- 213 J.H. Burns, J. Amer. Chem. Soc., 95 (1973) 3815.
- 214 J.H. Burns, J. Organometallic Chem., 69 (1974) 225.
- 215 G. Huttner and H. Lorenz, Chem. Ber., 107 (1974) 996.
- 216 G.G. Aleksandrov and Y.T. Struchkov, Zh.strukt. Khim., 14 (1973) 1067.
- 217 L. Ricard and R. Weiss, Inorg. Nuclear Chem. Letters, 10 (1974) 217.
- 218 A. Modinos and P. Woodward, J.C.S. Dalton, (1974) 2065.
- 219 B. Jovanovic, L. Manojlovic-Muir and K.W. Muir, J.C.S. Dalton, (1974) 195.
- 220 B. Henc, H. Pauling, G. Wilke, C. Krüger, G. Schroth and E.G. Hoffmann, Ann., (1974) 1820.
- 221 W. Kaminsky, J. Kopf and G. Thirase, Ann., (1974) 1531.
- G. Bandoli, D.A. Clemente, G. Deganello, G. Carturan, P. Uguagliati
 and U. Belluco, J. Organometallic Chem., 71 (1974) 125.
- K.P. Wagner, P.M. Treichel and J.C. Calabrese, J.Organometallic Chem.,
 71 (1974) 299.
- 247 B.L. Barnett and C. Krüger, J.Cryst. Molec. Struct., 2 (1972) 271.
- 248 E.A. Gladkikh and T.S. Kuntsevich, Zh.strukt.Khim., 14 (1973) 949.
- 249 M.J. Bennett, J.L. Pratt and R.M. Tuggle, Inorg. Chem., 13 (1974) 2408.
- 250 F.A. Cotton and B.A. Frenz, Acta Cryst., B30 (1974) 1772.
- 251 B.M. Gatehouse, B.E. Reichert and B.O. West, Acta Cryst., B30 (1974) 2451.
- J. Potenza, P. Giordano, D. Mastropaolo and A. Efraty, Inorg. Chem.,
 13 (1974) 2540.
- 253 K. Prout, S.R. Critchley and G.V. Rees, Acta Cryst., B30 (1974) 2305.
- H.-J. Schmitt and M.L. Ziegler, 2. Naturforsch, 28b (1973) 508.
- 255 F.A. Cotton, B.A. Frenz and D.L. Hunter, J.C.S. Chem. Comm., (1974) 755.
- 256 J. Potenza, R. Johnson, D. Mastropaolo and A. Efraty, J.Organometallic Chem., 64 (1974) C13.
- 257 V.S. Kuz'min, G.P. Zolnikova, Y.T. Struchkov and I.I. Kritskaya, Zh.strukt.Khim., 15 (1974) 162.

168	
258	Z.G. Aliev, L.O. Atovmyan and V.I. Ponomarev, Zh.strukt.Khim.,
	14 (1973) 748.
259	R.L. Sime and R.J. Sime, J.Amer. Chem. Soc., 96 (1974) 892.
260	C. Barbeau, K.S. Dichmann and L. Ricard, Canad. J. Chem., 51 (1973) 3027.
261	W. Henslee and R.E. Davis, J. Organometallic Chem., 81 (1974) 389.
262	JY. Chen, J. Halpern and J. Molin-Case, J. Coord. Chem., 2 (1973) 239.
263	Y. Ohashi, Y. Sasada, Y. Tashiro, Y. Ohgo, S. Takeuchi and
	J. Yoshimura, Bull. Chem. Soc. Japan, 46 (1973) 2589.
264	R.A. Forder and K. Prout, Acta Cryst., B30 (1974) 2312.
265	S.J. Rettig, A. Storr, B.S. Thomas and J. Trotter, Acta Cryst., B30
	(1974) 666.
266	C. Kowala, P.C. Wailes, H. Weigold and J.A. Wunderlich,
	J.C.S. Chem. Comm., (1974) 993.
267	M. Laing, G. Kruger and A.L. du Preez, J.Organometallic Chem., 82
	(1974) C40.
268	K. Prout and G.V. Rees, Acta Cryst., B30 (1974) 2717,
269	W.M. Horspool, J. Iball, M. Rafferty and S.N. Scrimgeour,
	J.C.S. Dalton, (1974) 401.
224	V.G. Albano, P. Chini, S. Martinengo, M. Sansoni and D. Strumolo,
	J.C.S. Chem.Comm., (1974) 299.
225	No reference.
226	U. Behrens and E. Weiss, J.Organometallic Chem., 73 (1974) C64.
227	F.A. Cotton, T. LaCour and A.G. Stanislowski, J.Amer.Chem.Soc.,
	96 (1974) 754.
228	J.A.K. Howard, S.A.R. Knox, V. Riera, B.A. Sosinsky, F.G.A. Stone
	and P. Woodward, J.C.S. Chem. Comm., (1974) 673.
229	A. Immirzi, J.Organometallic Chem., 81 (1974) 217.
230	L. Manojlovic-Muir and K.W. Muir, J.C.S. Dalton, (1974) 2427.
231	R.F. Stepaniak and N.C. Payne, J.Organometallic Chem., 72 (1974) 453.

	169
232	B.W. Davies and N.C. Payne, Canad.J.Chem., 51 (1973) 3477.
233	R.F. Stepaniak and N.C. Payne, Inorg. Chem., 13 (1974) 797.
234	A. Eisenstadt, J.M. Guss and R. Mason, J.Organometallic Chem.,
	80 (1974) 245.
235	R.F. Bryan and W.C. Schmidt, J.C.S. Dalton, (1974) 2337.
236	F.A. Cotton and J.M. Troup, J. Organometallic Chem., 77 (1974) 83.
237	R. Bau, B.CK. Chou, S.A.R. Knox, V. Riera and F.G.A. Stone,
	J.Organometallic Chem., 82 (1974) C43.
238	J.R. Doyle, N.C. Baenziger and R.L. Davis, Inorg. Chem., 13 (1974) 101.
239	G.D. Fallon and B.M. Gatehouse, J.C.S. Dalton, (1974) 1632.
240	J.A.K. Howard, S.A.R. Knox, F.G.A. Store, A.C. Szary and P. Woodward,
	J.C.S. Chem. Comm., (1974) 788.
241	V. Harder, E. Dubler and H. Werner, J. Organometallic Chem., 71 (1974) 427.
.42	U. Behrens and E. Weiss, J.Organometallic Chem., 73 (1974) C67.
43	G. Davey and F.S. Stephens, J.C.S. Dalton, (1974) 698.
244	J. Jecny and K. Huml, Acta Cryst., B30 (1974) 1105.
.45	R.C. Pettersen, D.L. Cullen, H.L. Pearce, M.J. Shapiro and B.L. Shapiro,
	Acta Cryst., B30 (1974) 2360.
46	M.R. Churchill and KK.G. Lin, J. Amer. Chem. Soc., 96 (1974) 76.
.70	Y. Yamamoto, K. Aoki and H. Yamazaki, J. Amer. Chem. Soc., 96 (1974) 2647.
71	T.S. Cameron, M.L.H. Green, H. Munakata, C.K. Prout and M.J. Smith,
	J.Coord.Chem., 2 (1972) 43.
72	N. Bresciani, M. Calligaris, P. Delise, G. Nardin and L. Randaccio,
	J.Amer.Chem.Soc., 96 (1974) 5642.
73	R. Mason and J.A. Zubieta, J. Organometallic Chem., 66 (1974) 289.
74	G.B. Robertson and P.O. Whimp, Inorg. Chem., 13 (1974) 1047.
.75	M. Green, S.H. Taylor, J.J. Daly and F. Sanz, J.C.S. Cham. Comm.,
•	(1974) 361.
276	R.H. Prince, G.M. Sheldrick, D.A. Stotter and R. Taylor,
	J.C.S. Chem.Comm., (1974) 854.

170	사실 것은 것은 가장에 가지 않는 것은 것은 것은 것은 것은 것은 것은 것을 가장하는 것을 가장하는 것은 것은 것은 것은 것은 것을 가지 않는다. 같은 것은
277	J.J. Daly, F. Sanz, R.P.A. Sneeden and H.H. Zeiss, Helv.Chim.Acta,
	57 (1974) 1863.
278	SI. Murahashi, T. Mizoguchi, T. Hosokawa, I. Moritani, Y. Kai,
	M. Kohara, N. Yasuoka and N. Kasai, J.C.S. Chem. Comm., (1974) 563.
279	J.A. Ibers, J.Organometallic Chem., 73 (1974) 389.
280	M.D. Rausch, I. Bernal, B.R. Davies, A. Siegel, F.A. Higbie and
	G.F. Westover, J. Coord. Chem., 3 (1973) 149.
281	M.G.B. Drew and J.D. Wilkins, J.C.S. Dalton, (1974) 1654.
282	No reference.
283	M. Horike, Y. Kai, N. Yasuoka and N. Kasai, J.Organometallic Chem.,
	72 (1974) 441.
284	F.W.B. Einstein and A.C. MacGregor, J.C.S. Dalton, (1974) 778.
285	F.A. Cotton, K.I. Hardcastle and G.A. Rusholme, J. Coord. Chem.,
	2 (1973) 217.
286	V.L. Goedken, SM. Peng and Y. Park, J.Amer.Chem.Soc., 96 (1974) 284.
287	C. Lecomte, Y. Dusausoy, J. Protas, J. Tirouflet and A. Dormond,
	J.Organometallic Chem., 73 (1974) 67.
288	K. Elmitt, M.L.H. Green, R.A. Forder, I. Jefferson and K. Prout,
**** *	J.C.S. Chem.Comm., (1974) 747.
289	R.L. Bennett, M.I. Bruce, I. Matsuda, R.J. Doedens, R.G. Little and
	J.T. Veal, J.Organometallic Chem., 67 (1974) C72.
290	G.J. Kruger, A.L. du Preez and R.J. Haines, J.C.S. Dalton, (1974) 1302.
291	N.W. Alcock, J.M. Brown and J.C. Jeffery, J.C.S. Shem. Comm., (1974) 829.
292	M.G.B. Drew and J.D. Wilkins, J.C.S. Dalton, (1974) 1973.
293	R. Clark, J. Howard and P. Woodward, J.C.S. Dalton, (1974) 2027.
294	E.C. Baker, K.N. Raymond, T.J. Marks and W.A. Wachter, J.Amer.Chem.Soc.,
1	96 (1974) 7586.
295	L. Manojlovic-Muir, J. Organometallic Chem., 73 (1974) C45.
296	M.J. Nolte and G. Gafner, Acta Cryst., B30 (1974) 738.

- 297 R.A. Forder and K. Prout, Acta Cryst., B30 (1974) 2778. 298 F.A. Cotton, B.A. Frenz and A.J. White, Inorg. Chem., 13 (1974) 1407 299 F.A. Cotton and J.M. Troup, J. Amer. Chem. Soc., 96 (1974) 4422. D.J. Brauer and C. Krüger, J. Organometallic Chem., 77 (1974) 423. 300 301 A.C. Villa, L. Coghi, A.G. Manfredotti and C. Guastini, Acta Cryst., B30 (1974) 2101. 302 V.W. Day, B.R. Stults, K.J. Reimer and A. Shaver, J. Amer. Chem. Soc., 96 (1974) 1227. M. Cooke, J.A.K. Howard, C.R. Russ, F.G.A. Stone and P. Woodward. 303 J.Organometallic Chem., 78 (1974) C43. 304 No reference. M.I. Bruce, R.C.F. Gardner, B.L. Goodall, F.G.A. Stone, R.J. Doedens 305 and J.A. Morehead, J.C.S. Chem. Comm., (1974) 185. 306 G.D. Fallon, B.M. Gatehouse, B.E. Reichert and B.O. West, J. Organometallic Chem., 81 (1974) C28. D.F. Christian, G.R. Clark and W.R. Roper, J. Organometallic Chem., 307 81 (1974) C7. 308 P.M. Bailey, B.E. Mann, A. Segnitz, K.L. Kaiser and P.M. Maitlis, J.C.S. Chem. Comm., (1974) 567. M.R. Churchill and S.W.-Y. Chang, J.C.S. Chem. Comm., (1974) 248. 309 A.J. Carty, G. Ferguson, H.N. Paik and R. Restivo, J. Organometallic Chem., 310 74 (1974) C14. G. Ferraris and G. Gervasio, J.C.S. Dalton, (1974) 1813. 311 T. Yamamoto, A.R. Garber, J.R. Wilkinson, C.B. Boss, W.E. Streib and 312 L.J. Todd, J.C.S. Chem. Comm., (1974) 354. D. Hall and R.B. Williamson, Cryst. Struct. Comm., 3 (1974) 327. 313 -Y. Wakatsuki, K. Aoki and H. Yamazaki, J. Amer. Chem. Soc., 96 (1974) 5284. 314
- M. Mathew, G.J. Palenik, A.J. Carty and H.N. Paik, J.C.S. Chem. Comm., 315 (1974) 25.

- 172
- 316 G.B. Robertson and P.O. Whimp, Inorg. Chem., 13 (1974) 2082.
- 317 V.E. Shklober, V.V. Skripkin, A.I. Gusev and Y.T. Struchkov, Zh.strukt. Khim., 13 (1972) 744.
- 318 C. Krüger and Y.-H. Tsay, Cryst. Struct. Comm., 3 (1974) 455.
- 319 A.J. Schultz, J.V. McArdle, G.P. Khare and R. Eisenberg, J.Organometallic Chem., 72 (1974) 415.
- 320 H.N. Paik, A.J. Carty, K. Dymock and G.J. Palenik, J. Organometallic Chem., 70 (1974) C17.
- 321 H.N. Paik, A.J. Carty, M. Mathew and G.J. Palenik, J.C.S. Chem. Comm., (1974) 946.
- 322 R. Countryman and B.R. Penfold, J.Cryst.Molec.Struct., 2 (1972) 281.
- 323 K. Okamoto, Y. Kai, N. Yasuoka and N. Kasai, J. Organometallic Chem.,
 65 (1974) 427.
- H. Felkin, P.J. Knowles, B. Meunier, A. Mitschler, L. Ricard and R. Weiss, J.C.S. Chem. Comm., (1974) 44.
- 325 B.W. Davies and N.C. Payne, Inorg. Chem., 13 (1974) 1848.
- 326 J.P. Collman, D.W. Murphy, E.B. Fleischer and D. Swift, Inorg.Chem., 13 (1974) 1.
- A.J. Schultz, G.P. Khare, C.D. Meyer and R. Eisenberg, Inorg. Chem.,
 13 (1974) 1019.
- 328 M. Angoletta, P.L. Bellon, M. Manassero and M. Sansoni, J. Organometallic Chem., 81 (1974) C40.
- 329 M.A. Bennett, R.N. Johnson, G.B. Robertson, I.B. Tomkins and P.O. Whimp, J.Organometallic Chem., 77 (1974) C43.
- 330 R. Mason and J.A. Zubieta, J. Organometallic Chem., 66 (1974) 279.
- 331 R.A. Forder and K. Prout, Acta Cryst., B30 (1974) 2318.
- 332 G.J. Gainsford and R. Mason, J. Organometallic Chem., 80 (1974) 395.
- 333 M.L.H. Green, G.A. Moser, I. Packer, F. Petit, R.A. Forder and

K. Prout, J.C.S. Chem. Comm., (1974) 839.

- 334 I. Bernal, A. Clearfield and J.S. Ricci, J.Cryst.Molec.Struct.,
 4 (1974) 43
- 335 R. Schlodder, J.A. Ibers, M. Lenarda and M. Graziani, J. Amer. Chem. Soc., 96 (1974) 6893.
- 336 C. Barbeau and R.J. Dubey, Canad. J. Chem., 52 (1974) 1140.
- 337 J.A. McGinnety, J.C.S. Dalton, (1974) 1038.
- 338 N.I. Kirillova, A.I. Gusev, A.A. Pasynskii and Y.T. Struchkov, Zh.strukt.Khim., 15 (1974) 288.
- 339 M.E. Jason, J.A. McGinnety and K.B. Wiberg, J. Amer. Chem. Soc., 96 (1974) 6531.
- 340 P.L. Bellon, M. Manassero, F. Porta and M. Sansoni, J. Organometallic Chem., 80 (1974) 139.
- 341 M. Zocchi and A. Albinati, J. Organometallic Chem., 77 (1974) C40.
- 342 D.J. Yarrow, J.A. Ibers, M. Lenarda and M. Graziani, J.Organometallic Chem., 70 (1974) 133.
- 343 P.L. Bellon, G. Caglio, M. Manassero and M. Sansoni, J.C.S. Dalton, (1974) 897.
- 344 F.A. Cotton, B.A. Frenz and D.L. Hunter, J. Amer. Chem. Soc., 96 (1974) 4820.
- 345 J. Rejaram, R.G. Pearson and J.A. Ibers, J. Amer. Chem. Soc., 96 (1974) 2103.
- 346 M.J. Doyle, M.F. Lappert, G.M. McLaughlin and J. McMeeking, J.C.S. Dalton, (1974) 1494.
- 347 G. Allegra, M. Calligaris, R. Furlanetto, G. Nardin and L. Radaccio, Cryst.Struct.Comm., 3 (1974) 69.
- A.N. Nesmeyanov, E.G. Perevalova, K.I. Grandberg, D.A. Lemenovskii,
 T.V. Baukova and O.B. Afanasova, J.Organometallic Chem.,
 65 (1974) 131.
- 349 V.G. Andrianov, Y.T. Struchkov and E.R. Rossinskaya, 2h. strukt. Khim.,
 15 (1974) 74.

174	
350	S.F. Watkins, R. Musselman and B. Gayle, unpublished work cited in:
	G.R. Newkome and G.L. McClure, J.Amer. Chem. Soc., 96 (1974) 617.
351	J.F. van Bear, R. Meij and K. Olie, Cryst. Struct. Comm., 3 (1974) 587.
352	P. Dapporto and L. Sacconi, Inorg. Chim. Acta, 9 (1974) L2.
353	M.I. Bruce, O.M. Abu Salah, R.E. Davies and N.V. Raghavan,
	J.Organometallic Chem., 64 (1974) C48.
354	J.M. Baraban and J.A. McGinnety, Inorg. Chem., 13 (1974) 2864.
355	C.G. Pierpont and M.C. Mazza, Inorg. Chem., 13 (1974) 1891.
356	T. Ukai, H. Kawazura, Y. Ishii, J.J. Bonnett and J.A. Ibers,
1. 1. a. t. a.	J.Organometailic Chem., 65 (1974) 253.
357	R.A. Mariezcurrena and S.E. Rasmussen, Acta Chem. Scand., 27 (1973) 2678.
358	J. Chatt, M. Kubota, G.J. Leigh, F.C. March, R. Mason and D.J. Yarrow,
	J.C.S. Chem. Comm., (1974) 1033.
359	G.del Pietro, G. Perego, A. Zazzetta and M. Cesari, Cryst.Struct.Comm.,
	3 (1974) 725.
360	J.C. McConway, A.C. Skapski, L. Phillips, R.J. Young and G. Wilkinson,
	J.C.S. Chem.Comm., (1974) 327.
361	O.M. Abu Salah, M.I. Bruce and A.D. Redhouse, J.C.S. Chem. Comm.,
	(1974) 855.
362	P. Bird, J.F. Harrod and K.A. Than, J.Amer.Chem.Soc., 96 (1974) 1222.
363	S.D. Ittel and J.A. Ibers, J. Organometallic Chem., 74 (1974) 121.
364	V.G. Albano and G. Ciani, J. Organometallic Chem., 66 (1974) 311.
365	J.S. Miller, M.O. Visscher and K.G. Caulton, Inorg. Chem., 13 (1974) 1632.
366	S. Jacobson, A.J. Carty, M. Mathew and G.J. Palenik, J. Amer. Chem. Soc.,
	96 (1974) 4330.
367	J.H. Burns, W.H. Baldwin and F.H. Fink, Inorg. Chem., 13 (1974) 1916.
368	A.J.F. Fraser and R.O. Gould, J.C.S. Dalton, (1974).1139.
369	K.M. Melmed, T. Li, J.J. Mayerle and S.J. Lippard, J. Amer. Chem. Soc.,
	96 (1974) 69.

	175
370	R. Schlodder and J.A. Ibers, Inorg. Chem., 13 (1974) 2870.
371	O.M. Abu Salah, M.I. Bruce, M.R. Churchill and B.G. DeBoer,
	J.C.S. Chem. Comm., (1974) 688.
372	M.R. Churchill and S.A. Bezman, Inorg. Chem., 13 (1974) 1418.
373	C.A. Ghilardi and L. Sacconi, Cryst. Struct. Comm., 3 (1974) 415.
374	L. Sacconi, A. Orlandini and S. Midollini, Inorg. Chem., 13 (1974) 2850.
375	V.G. Albano and P.L. Bellon, J.Organometallic Chem., 37 (1972) 151.
376	A.I. Gusev, G.G. Aleksandrov and Y.T. Struchkov, Zh.strukt.Khim.,
	14 (1973) 685.
377	A.C. Skapski and F.A. Stephens, J.C.S. Dalton, (1974) 390.
378	B.R. Davis and I. Bernal, J.Cryst.Molec.Struct., 2 (1972) 261.
379	J. Schmidt, H. Kühr, W.L. Dorn and J. Kopf, Inorg. Nuclear Chem. Letters,
	10 (1974) 55.
380	R.S. Gall, C.TW. Chu and L.F. Dahl, J.Amer.Chem.Soc., 96 (1974) 4019.
381	R. Wiest and R. Weiss, Ren. Chim. Minér. France, 9 (1972) 655.
382	M. Laing, R. Reimann and E. Singleton, Inorg. Nuclear Chem. Letters,
	10 (1974) 557.
383	R.S. Gall, N.G. Connelly and L.F. Dahl, J.Amer.Chem.Soc., 96 (1974) 4017.
384	K.D. Karlin, D.L. Lewis, H.N. Rabinowitz and S.J. Lippard,
	J.Amer.Chem.Soc., 96 (1974) 6519.
385	J.S. Field, P.J. Wheatley and S. Bhaduri, J.C.S. Dalton, (1974) 74.
386	A.J. Schultz, R.L. Henry, J. Reed and R. Eisenberg, Inorg. Chem.,
	13 (1974) 732.
387	J. Reed, S.L. Soled and R. Eisenberg, Inorg. Chem., 13 (1974) 3001.
388	V.G. Albano, A. Araneo, P.L. Bellon, G. Ciani and M. Manassero,

A.P. Gaughan, B.J. Corden, R. Eisenberg and J.A. Ibers, Inorg. Chem.,
13 (1974) 786.

J.Organometallic Chem., 67 (1974) 413.

176	
390	K.W. Muir, L. Manojlovic-Muir and R. Herak, unpublished work quoted in:
	R.W. Adams, J. Chatt, N.E. Hooper and G.J. Leigh, J.C.S. Dalton,
	(1974) 1073.
391	P.L. Piciulo, G. Rupprecht and W.R. Scheidt, J.Am?r.Chem.Soc.,
· · · ·	96 (1974) 5293.
392	G.R. Clark, J.M. Waters and K.K. Whittle, Inorg. Chem., 13 (1974) 1628.
393	F. Bottomley, J.C.S. Dalton, (1974) 1600.
394	V.S. Sergienko, T.S. Khodashova, M.A. Porai-Koshits and L.G. Andrutskaya,
	Zh.strukt.Khim., 14 (1973) 945.
395	J.M. Epstein, A.H. White, S.B. Wild and A.C. Willis, J.C.S. Dalton,
	(1974) 436.
396	T.S. Khodashova, V.S. Sergienko, A.N. Stetsenko, M.A. Porai-Koshits
	and L.A. Butman, Zh.strukt. Khim., 15 (1974) 471.
397	M. Mercer, J.C.S. Dalton, (1974) 1637.
398	S.D. Ittel and J.A. Ibers, J.Amer.Chem.Soc., 96 (1974) 4804.
399	R. Mason, K.M. Thomas, J.A. Zubieta, P.G. Douglas, A.R. Galbraith
•	and B.L. Shaw, J.Amer. Chem. Soc., 50 (1974) 260.
400	G.A. Heath, R. Mason and K.M. Thomas, J.Amer.Chem.Soc.,
н н. Н	96 (1974) 259.
401	R.S. Shandles, R.K. Murmann and E.O. Schlemper, Inorg. Chem.,
	13 (1974) 1373.
402	M. Calligaris, T. Yoshida and S. Otsuka, Inorg. Chim. Acta,
	11 (1974) 15.
403	M. Matsumoto, H. Yoshioka, K. Nakatsu, T. Yoshida and S. Otsuka,
	J.Amer.Chem.Soc., 96 (1974) 3322.
404	A. Immirzi and A. Musco, J.C.S. Chem. Comm., (1974) 400.
405	L.J. Guggenberger, J.Organometallic Chem., 81 (1974) 271.
406	R.J. Doedens and L.F. Dahl, J.Amcr.Chem.Soc., 87 (1965) 2576.
.*	